IBEX DRILLING SOLUTIONS

MOTOR HANDBOOK RAM PERFORMANCE MOTOR First Edition - 2025

ABOUT IBEX

IBEX Drilling Solutions is a privately owned Midland, Texas based company that offers the RAM mud lubricated-style downhole motor for rental or purchase options and are available for straight, directional, or horizontal drilling applications. IBEX's main goal is to provide the highest quality equipment to our customers so that we may support their needs to drill as efficiently and economically as possible in various applications.

MOTOR HANDBOOK

This motor handbook contains technical information including specification sheets, diagrams, tables, and charts for the various sizes and configurations that IBEX offers. This handbook is to be used for reference purposes only.

DISCLAIMER

The interpretation of the information and how it is used by the customer is the sole responsibility of the customer or end user and is subject to change at any time. IBEX is not responsible for the end result of work based on the information given in this motor handbook. Please contact any of IBEX's locations if there are questions not answered in this handbook.

> IBEX Drilling Solutions 3801 N CR 1108 Midland, TX 79706

630 Aurora Business Park Dr Conroe, TX 77301

Main: 432-458-3340 website: <u>www.ibexds.com</u>

TABLE OF CONTENTS

1	Introduction	
	Mud Motor Design	1-1
	Mud Motor Features	1-2
2	Motor Components	
2		0.4
	Bearing Assembly	2-1
	Maximum Bearing Assembly Life	2-1
	Driveshaft	2-1
	Fixed Bend Housing	2-2
	Power Section	2-2
	Rotor Jetting	2-7
	Ton Sub	2_10
	Poter Catch	2 10
		. 2-10
•		
3	Operating Data	
	Job Preparation	3-1
	Pre-Run Motor Evaluation and Set Up	3-2
	Running IBEX Motors	3-5
	Drilling Fluid Selection	3-10
	Air or 2 Phase Drilling	3_12
	Drilling With Nitrogon	2 15
		0 4 5
	Downnoie Temperature	. 3-15
4	Motor Specifications	
	5" 5/6 Lobe 6.7 Stage	4-1
	5" 6/7 Lobe 8.8 Stage	4-2
	5" 6/7 Lobe 8.8 Stage 5" 6/7 Lobe 8.8 Stage – RSS Assist	4-2 4-3
	5" 6/7 Lobe 8.8 Stage 5" 6/7 Lobe 8.8 Stage – RSS Assist 5" 7/8 Lobe 8.3 Stage	4-2 4-3 4-4
	5" 6/7 Lobe 8.8 Stage 5" 6/7 Lobe 8.8 Stage – RSS Assist 5" 7/8 Lobe 8.3 Stage 5" 7/8 Lobe 8.3 Stage – RSS Assist	4-2 4-3 4-4 4-5
	5" 6/7 Lobe 8.8 Stage 5" 6/7 Lobe 8.8 Stage – RSS Assist 5" 7/8 Lobe 8.3 Stage 5" 7/8 Lobe 8.3 Stage – RSS Assist 5" 2/8" 5/6 Lobe 8.9 Stage	4-2 4-3 4-4 4-5
	5" 6/7 Lobe 8.8 Stage 5" 6/7 Lobe 8.8 Stage – RSS Assist 5" 7/8 Lobe 8.3 Stage – RSS Assist 5" 7/8 Lobe 8.3 Stage – RSS Assist 5 3/8" 5/6 Lobe 9.9 Stage	4-2 4-3 4-4 4-5 4-6
	5" 6/7 Lobe 8.8 Stage 5" 6/7 Lobe 8.8 Stage – RSS Assist 5" 7/8 Lobe 8.3 Stage – RSS Assist 5" 7/8 Lobe 8.3 Stage – RSS Assist 5 3/8" 5/6 Lobe 9.9 Stage 5 1/2" 5/6 Lobe 9.9 Stage	4-2 4-3 4-4 4-5 4-6 4-7
	5" 6/7 Lobe 8.8 Stage 5" 6/7 Lobe 8.8 Stage – RSS Assist 5" 7/8 Lobe 8.3 Stage 5" 7/8 Lobe 8.3 Stage – RSS Assist 5 3/8" 5/6 Lobe 9.9 Stage 5 1/2" 5/6 Lobe 9.9 Stage 5 1/2" 6/7 Lobe 8.8 Stage	4-2 4-3 4-4 4-5 4-6 4-7 4-8
	5" 6/7 Lobe 8.8 Stage 5" 6/7 Lobe 8.8 Stage – RSS Assist 5" 7/8 Lobe 8.3 Stage – RSS Assist 5" 7/8 Lobe 8.3 Stage – RSS Assist 5 3/8" 5/6 Lobe 9.9 Stage 5 1/2" 5/6 Lobe 9.9 Stage 5 1/2" 6/7 Lobe 8.8 Stage 5 1/2" 7/8 Lobe 8.3 Stage	4-2 4-3 4-4 4-5 4-5 4-6 4-7 4-8 4-9
	5" 6/7 Lobe 8.8 Stage 5" 6/7 Lobe 8.8 Stage – RSS Assist 5" 7/8 Lobe 8.3 Stage – RSS Assist 5 3/8" 5/6 Lobe 9.9 Stage 5 1/2" 5/6 Lobe 9.9 Stage 5 1/2" 6/7 Lobe 8.8 Stage 5 1/2" 7/8 Lobe 8.3 Stage 5 3/4" x 5 ½" 6/7 Lobe 8.8 Stage Combo	4-2 4-3 4-4 4-5 4-6 4-6 4-7 4-8 4-9 . 4-10
	5" 6/7 Lobe 8.8 Stage 5" 6/7 Lobe 8.8 Stage – RSS Assist 5" 7/8 Lobe 8.3 Stage – RSS Assist 5 3/8" 5/6 Lobe 9.9 Stage 5 1/2" 5/6 Lobe 9.9 Stage 5 1/2" 6/7 Lobe 8.8 Stage 5 1/2" 7/8 Lobe 8.3 Stage 5 3/4" x 5 ½" 6/7 Lobe 8.8 Stage Combo 6 5/8" 5/6 Lobe 8.2 Stage	4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 . 4-10 . 4-11
	5" 6/7 Lobe 8.8 Stage	4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 . 4-10 . 4-11 4-12
	5" 6/7 Lobe 8.8 Stage	4-2 4-3 4-4 4-5 4-5 4-6 4-7 4-8 4-9 . 4-10 . 4-11 . 4-12
	5" 6/7 Lobe 8.8 Stage	4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 . 4-10 . 4-11 . 4-12 . 4-13
	5" 6/7 Lobe 8.8 Stage 5" 6/7 Lobe 8.8 Stage – RSS Assist 5" 7/8 Lobe 8.3 Stage – RSS Assist 5 3/8" 5/6 Lobe 9.9 Stage 5 1/2" 5/6 Lobe 9.9 Stage 5 1/2" 6/7 Lobe 8.8 Stage 5 1/2" 7/8 Lobe 8.3 Stage 5 1/2" 7/8 Lobe 8.3 Stage 5 3/4" x 5 ½" 6/7 Lobe 8.8 Stage Combo 6 5/8" 5/6 Lobe 8.2 Stage 6 5/8" 6/7 Lobe 7.8 Stage – 55" SBTB 6 5/8" 6/7 Lobe 7.8 Stage – RSS Assist 6 5/8" 7/ Lobe 7.8 Stage – RSS Assist 6 5/8" 7/ Lobe 7.8 Stage – RSS Assist	4-2 4-3 4-4 4-5 4-5 4-5 4-7 4-8 4-9 . 4-10 . 4-11 . 4-12 . 4-13 . 4-14
	5" 6/7 Lobe 8.8 Stage 5" 6/7 Lobe 8.8 Stage – RSS Assist 5" 7/8 Lobe 8.3 Stage – RSS Assist 5 3/8" 5/6 Lobe 9.9 Stage 5 1/2" 5/6 Lobe 9.9 Stage 5 1/2" 6/7 Lobe 8.8 Stage 5 1/2" 7/8 Lobe 8.3 Stage 5 1/2" 7/8 Lobe 8.3 Stage 5 3/4" x 5 ½" 6/7 Lobe 8.8 Stage Combo 6 5/8" 5/6 Lobe 8.2 Stage 6 5/8" 6/7 Lobe 7.8 Stage – 55" SBTB 6 5/8" 6/7 Lobe 7.8 Stage – RSS Assist 6 5/8" 7/8 Lobe 5.7 Stage	4-2 4-3 4-4 4-5 4-5 4-7 4-8 4-9 . 4-10 . 4-11 . 4-12 . 4-13 . 4-14 . 4-15
	5" 6/7 Lobe 8.8 Stage 5" 6/7 Lobe 8.8 Stage – RSS Assist 5" 7/8 Lobe 8.3 Stage – RSS Assist 5 3/8" 5/6 Lobe 9.9 Stage 5 1/2" 5/6 Lobe 9.9 Stage 5 1/2" 6/7 Lobe 8.8 Stage 5 1/2" 7/8 Lobe 8.3 Stage 5 1/2" 7/8 Lobe 8.3 Stage 5 3/4" x 5 ½" 6/7 Lobe 8.8 Stage Combo 6 5/8" 5/6 Lobe 8.2 Stage 6 5/8" 6/7 Lobe 7.8 Stage – 55" SBTB 6 5/8" 6/7 Lobe 7.8 Stage – RSS Assist 6 5/8" 7/8 Lobe 5.7 Stage – 55" SBTB 6 5/8" 7/8 Lobe 5.7 Stage – 55" SBTB	4-2 4-3 4-4 4-5 4-5 4-6 4-7 4-7 4-8 4-9 . 4-10 . 4-11 . 4-12 . 4-13 . 4-14 . 4-15 . 4-16
	5" 6/7 Lobe 8.8 Stage	4-2 4-3 4-4 4-5 4-5 4-5 4-5 4-5 4-7 4-8 4-9 . 4-10 . 4-11 . 4-12 . 4-13 . 4-14 . 4-15 . 4-16 . 4-17
	5" 6/7 Lobe 8.8 Stage	4-2 4-3 4-4 4-5 4-5 4-5 4-6 4-7 4-8 4-9 . 4-10 . 4-11 . 4-12 . 4-13 . 4-14 . 4-15 . 4-16 . 4-17 . 4-18
	5" 6/7 Lobe 8.8 Stage	4-2 4-3 4-4 4-5 4-5 4-5 4-5 4-5 4-7 4-8 4-9 . 4-10 . 4-11 . 4-12 . 4-13 . 4-14 . 4-15 . 4-16 . 4-17 . 4-18 . 4-19
	5" 6/7 Lobe 8.8 Stage	4-2 4-3 4-4 4-5 4-5 4-5 4-5 4-5 4-7 4-8 4-9 . 4-10 . 4-11 . 4-12 . 4-13 . 4-14 . 4-15 . 4-16 . 4-17 . 4-18 . 4-19 . 4-20
	5" 6/7 Lobe 8.8 Stage	4-2 4-3 4-4 4-5 4-5 4-5 4-5 4-5 4-7 4-8 4-9 . 4-10 . 4-11 . 4-12 . 4-13 . 4-14 . 4-15 . 4-16 . 4-17 . 4-18 . 4-19 . 4-20
	5" 6/7 Lobe 8.8 Stage 5" 6/7 Lobe 8.8 Stage – RSS Assist 5" 7/8 Lobe 8.3 Stage – RSS Assist 5 3/8" 5/6 Lobe 9.9 Stage 5 1/2" 5/6 Lobe 9.9 Stage 5 1/2" 6/7 Lobe 8.8 Stage 5 1/2" 7/8 Lobe 8.3 Stage 5 1/2" 7/8 Lobe 8.3 Stage 5 3/4" x 5 ½" 6/7 Lobe 8.8 Stage Combo 6 5/8" 5/6 Lobe 8.2 Stage 6 5/8" 6/7 Lobe 7.8 Stage – 55" SBTB 6 5/8" 6/7 Lobe 7.8 Stage – RSS Assist 6 5/8" 7/8 Lobe 5.7 Stage – S5" SBTB 6 5/8" 7/8 Lobe 5.7 Stage – 55" SBTB 6 5/8" 7/8 Lobe 6.4 Stage 6 5/8" 7/8 Lobe 6.4 Stage 7 1/8" 5/6 Lobe 8.3 Stage 7 1/8" 5/6 Lobe 8.3 Stage 7 1/8" 5/6 Lobe 8.3 Stage 7 1/8" 5/6 Lobe 8.4 Stage 7 1/8" 5/6" Lobe 8.4 Stage 7 1/8" 5/6" Lobe 8.4 Stage 7 1/8" 5/6" Lob	4-2 4-3 4-4 4-5 4-5 4-6 4-7 4-8 4-9 . 4-10 . 4-11 . 4-12 . 4-13 . 4-14 . 4-15 . 4-16 . 4-17 . 4-18 . 4-19 . 4-20 . 4-21
	5" 6/7 Lobe 8.8 Stage	4-2 4-3 4-4 4-5 4-5 4-5 4-6 4-7 4-8 4-9 . 4-10 . 4-11 . 4-12 . 4-13 . 4-14 . 4-15 . 4-16 . 4-17 . 4-18 . 4-19 . 4-20 . 4-21 . 4-22
	5" 6/7 Lobe 8.8 Stage	4-2 4-3 4-4 4-5 4-5 4-5 4-6 4-7 4-8 4-9 . 4-10 . 4-11 . 4-12 . 4-13 . 4-14 . 4-15 . 4-16 . 4-17 . 4-18 . 4-19 . 4-20 . 4-21 . 4-22 . 4-23
	5" 6/7 Lobe 8.8 Stage 5" 6/7 Lobe 8.8 Stage – RSS Assist 5" 7/8 Lobe 8.3 Stage – RSS Assist 5 3/8" 5/6 Lobe 9.9 Stage 5 1/2" 5/6 Lobe 9.9 Stage 5 1/2" 6/7 Lobe 8.8 Stage 5 1/2" 7/8 Lobe 8.3 Stage 5 1/2" 7/8 Lobe 8.3 Stage 5 3/4" x 5 ½" 6/7 Lobe 8.8 Stage Combo 6 5/8" 5/6 Lobe 8.2 Stage 6 5/8" 6/7 Lobe 7.8 Stage – 55" SBTB 6 5/8" 6/7 Lobe 7.8 Stage – RSS Assist 6 5/8" 7/8 Lobe 5.7 Stage – SS SBTB 6 5/8" 7/8 Lobe 5.7 Stage – 55" SBTB 7 1/8" S/6 Lobe 8.3 Stage 7 1/8" 7/8 Lobe 6.4 Stage 7 1/8" x 6 5/8" Combo 7/8 Lobe 6.4 Combo 8 ¼" 7/8 Lobe 5.9 Stage	4-2 4-3 4-4 4-5 4-5 4-6 4-7 4-8 4-9 . 4-10 . 4-11 . 4-12 . 4-13 . 4-14 . 4-15 . 4-16 . 4-17 . 4-18 . 4-19 . 4-20 . 4-21 . 4-22 . 4-23 . 4-24
	5" 6/7 Lobe 8.8 Stage 5" 6/7 Lobe 8.8 Stage – RSS Assist 5" 7/8 Lobe 8.3 Stage – RSS Assist 5 3/8" 5/6 Lobe 9.9 Stage 5 1/2" 5/6 Lobe 9.9 Stage 5 1/2" 6/7 Lobe 8.8 Stage 5 1/2" 7/8 Lobe 8.3 Stage 5 1/2" 7/8 Lobe 8.3 Stage 5 3/4" x 5 ½" 6/7 Lobe 8.8 Stage Combo 6 5/8" 5/6 Lobe 8.2 Stage 6 5/8" 6/7 Lobe 7.8 Stage – 55" SBTB 6 5/8" 6/7 Lobe 7.8 Stage – RSS Assist 6 5/8" 7/8 Lobe 5.7 Stage – S5" SBTB 6 5/8" 7/8 Lobe 5.7 Stage – 55" SBTB 7 1/8" S/6 Lobe 8.3 Stage 7 1/8" 7/8 Lobe 6.4 Stage 7 1/8" x 6 5/8" Combo 7/8 Lobe 6.4 Combo 8 ¼" 7/8 Lobe 5.9 Stage 8 ¼" 7/8 Lobe 7.0 Stage	4-2 4-3 4-4 4-5 4-5 4-6 4-7 4-8 4-9 . 4-10 . 4-11 . 4-12 . 4-13 . 4-14 . 4-15 . 4-16 . 4-17 . 4-18 . 4-19 . 4-20 . 4-21 . 4-22 . 4-23 . 4-24 . 4-25

TABLE OF CONTENTS

5	Engineering Data	
	Formulas	5-1
	Conversion Tables	5-2
	Buoyancy Factors for Steel Drill Collars	5-6
	Collar Weights in Pounds Per Foot	5-7
	Drill Collar Connection Make Up Torque	5-8
	Properties of Drill Pipes and Tool Joints	. 5-22
	Mechanical Properties of Drill Pipe	. 5-31
	Heavy Weight Drill Pipe	. 5-41
	Drill Bit Sizes	. 5-42
	Hole Curvature	. 5-43
6	Nozzle Selection	6-1
7	Fishing Dimensions	
	5" 5/6 Lobe 6.7 Stage	7-1
	5" 6/7 Lobe 8.8 Stage	7-2
	5" 6/7 Lobe 8.8 Stage – RSS Assist	7-3
	5" 7/8 Lobe 8.3 Stage	7-4
	5" 7/8 Lobe 8.3 Stage – RSS Assist	7-5
	5 3/8" 5/6 Lobe 9.9 Stage	7-6
	5 1/2" 5/6 Lobe 9.9 Stage	7-7
	5 1/2" 6/7 Lobe 8.8 Stage	7-8
	5 1/2" 7/8 Lobe 8.3 Stage	7-9
	5 ³ / ₄ " x 5 ¹ / ₂ " 6/7 Lobe 8.8 Stage Combo	. 7-10
	6 5/8" 5/6 Lobe 8.2 Stage	7-11
	6 5/8 6/7 Lobe 7.8 Stage	
	6 5/8 6/7 Lobe 7.8 Stage - 55 SBIB	7 1 3
	6 5/0 0/7 LODE 7.0 Stage - RSS ASSIST	7 15
	6 5/0° 7/0 Lobe 5.7 Stage 55° SPTP	7 16
	6 5/8" 7/8 Lobe 5.7 Stage – 51" SSBTB	7_17
	6 5/8" 7/8 Lobe 5.7 Stage - 55" SSBTB IB Stab	7_18
	6 5/8" 7/8 Lobe 6 4 Stage	7_10
	6 5/8" 7/8 Lobe 6 4 Stage - 55" SBTB	7_20
	7 1/8" 5/6 Lobe 8.3 Stage	7-21
	7 1/8" 7/8 Lobe 8 5 Stage	7-22
	7 1/8" 7/8 Lobe 8.5 Stage – Jaw Clutch	7-23
	7 1/8" x 6 5/8" Combo 7/8 Lobe 6.4 Combo	7-24
	8 ¼" 7/8 Lobe 5.9 Stage	. 7-25
	8 ¼" 7/8 Lobe 7.0 Stage	. 7-26
	8 ¼" 7/8 Lobe 7.0 Stage – Jaw Clutch	7-27
	5	

INTRODUCTION

Mud Motor Design

IBEX offers the RAM mud lubricated-style downhole motor which are available in multiple diameters for straight, directional, horizontal or RSS assist drilling applications. The RAM is a fully redesigned tough and versatile mud motor that offers the performance necessary for a variety of drilling applications.

These motors feature a sleeve on sleeve upper and lower radial bearings that provide radial support plus controlling the flow of the fluid through the bearing stack. The motors also feature multiple tiers of hardened thrust-bearing races and rock bit balls that provide the endurance to withstand long continuous run times in any drilling environment.

The power sections provided by IBEX offer several ranges of bit speeds and torques which can be set up to function in both low or hot hole temperatures and inverted mud systems. IBEX motors are available in multiple speed and torque ranges for various downhole applications. Also, IBEX mud motors are designed to meet very high criteria with the primary focus on reliability and simplicity. This produces an extremely tough and versatile mud motor, which provides the end user with the performance necessary for a variety of drilling applications.

Mud Motor Features

- The RAM bearing assembly features a typical stack up of thrust bearing races and rock bit balls along with upper and lower radial bearings providing increased axial and radial load capabilities that reduces the stresses on individual components within the bearing assembly providing extended run times and reduced operating costs.
- The RAM offers multiple driveshaft assemblies including a Hybrid Flex Shaft, Jaw Clutch, and our patent protected Lobe Coupling. All the driveshaft assembly designs convert the eccentric rotation of the rotor into concentric rotation for input into the bearing assembly. The driveshaft transfers the thrust load from the rotor caused by the pressure drop across it. All driveshaft assemblies are re-buildable and reuseable, which can be easily assembled or disassembled.
- The RAM motors are assembled with fixed bend or straight housings. Fixed bend housings can be manufactured from 0° to 3° to achieve the desired build rates during the run. The straight housings are primarily used for Rotary Steerable Assist applications when additional output of the RSS tool is needed.
- The RAM mud motors are assembled with multiple power section models that produce various speed and torque outputs to accommodate customer needs. All stators are lined with high durometer hard rubber elastomers which produces maximum power section output.

IBEX DRILLING SOLUTIONS

01 INTRODUCTION

 The RAM mud motors are assembled with a top sub/rotor catch assembly that will allow for the entire motor to be retrieved should any housing connection including the top stator connection fracture or backoff.

SERVICE QUALITY PLAN (SQP)

The IBEX Service Quality Program (SQP) policy establishes our commitment to continuous improvement and providing first class services to our customers. By doing so, IBEX will provide the highest quality equipment to our customers so they can operate with the confidence that their operation will run successfully. IBEX's goal is to:

- Provide the highest-quality services to our customers.
- Expand, improve, and add value to the services that we provide.
- Continuously focus on service quality to improve IBEX's Quality Management System that ensures the company is run at the highest level to support our customers' needs.
- Challenge our employees to be responsive to the customer's expectations and "do it right the first time."
- Provide services that exceed our customer's expectations every time.
- Evaluate the effectiveness of the SQP system which allows IBEX to continuously develop and improve.
- Involve employees so they may take pride in their workmanship and commitment to quality.

MOTOR COMPONENTS

Bearing Assembly

The bearing assembly transfers the rotation of the rotor, through the driveshaft, to the drill bit. It carries the compression thrust load created by weight on bit, and the radial and bending loads created while directional or steerable drilling. The assembly also carries the tension created when off bottom thrust loads are produced by the pressure drop across the rotor and the drill bit, as well as any load caused by back reaming. The bearing mandrel bit box is the lower most connection of the mud motor and is manufactured with an API tool joint box thread.

Maximum Bearing Assembly Life

Maintaining the proper flow rate and WOB will significantly increase bearing assembly life. Refer to the motor specification sheets given in Section 4 "Motor Specifications".

Exceeding maximum flow rate can cause the radial bearings to wash. Exceeding maximum WOB can cause the thrust bearings to wear prematurely.

Driveshaft

IBEX offers Single and Double Articulated driveshaft designs capable of withstanding the high torque of extended power sections and can be run with bend settings up to 3° depending on the driveshaft design used.

2-1

02 MOTOR COMPONENTS

The driveshaft assembly converts the eccentric rotation of the rotor into concentric rotation for input into the bearing assembly. The driveshaft transfers the thrust load from the rotor caused by the pressure drop across it. The driveshaft assembly is also rebuildable and re-useable which can be easily assembled or disassembled.

The Single Articulated driveshaft consists of a single universal joint connecting to the bearing assembly and lower rotor connections. The Single Articulated assembly is lubricated, sealed, and pressure balanced. The Double Articulated driveshaft assembly consists of upper and lower universal joints along with a center driveshaft. The upper universal joint connects to the lower rotor connection and the lower universal joint connects to the bearing assembly connection. The Double Articulated assembly is not sealed and can run at any temperature.

Fixed Bend Housing

IBEX motors can be assembled with a fixed bend housing which also are manufactured in various bend angles ranging from 0° - 3°.

Power Section

IBEX offers multi-lobe power section configurations. The power section is a Moineau pump operated in reverse when drilling fluid pressure is applied. It transforms the hydraulic energy from the drilling fluid pressure to mechanical energy which rotates the driveshaft in turn rotating the bit.

2-2

The power section consists of a helical shaped rotor with a multi-lobe cross section that forms a helix which runs inside the stator.

The stator tube has an elastomer liner that is bonded to the ID of the tube. The stator elastomer liner is similar to the shape of the rotor. However, it has one additional lobe than the rotor which creates adequate clearance allowing the rotor to rotate within the stator. The rotor forms a continuous seal lengthwise with the stator at their contact points creating wedge shaped cavities. When drilling fluid pressure is applied to these cavities, the rotor is forced to rotate within the stator.

The stator, having one more lobe than the rotor, has a pitch length which is longer than the rotor's. The stator pitch length can be calculated by dividing the number of stator lobes by the number of rotor lobes. The power section configurations are designated by the ratio of their lobes. Generally, as the number of lobes increases so does the torque. Then the speed decreases. Another factor affecting torque is the number of spirals each lobe translates over the length of the rotor. One complete spiral is referred to as one stage.

Extended power sections offer increased torque without reducing speed by increasing the overall length and number of stages.

Power Section Fit

The power section fit is established by obtaining the rotor and stator interference or clearance fit. This is the difference between the stator minor diameter (lobe peak to lobe peak) and the rotor mean diameter (lobe peak to lobe valley).

The power section fit is determined by the bottom hole temperature (BHT), mud type, etc. Generally, where the BHT is low, the rotor is sized slightly larger than the stator creating an interference fit of the power section. Increasing the rotor and stator interference increases the sealing surfaces thereby producing larger pressure drops but decreases stator life as the elevated frictional forces can cause elastomer wear and/or premature chunking.

In applications where the BHT is high the power section fit is decreased. Elevated temperatures require that the power section fit be reduced to achieve clearance (negative) fits. Clearance fits and/or flush fits (rotor mean diameter and stator minor diameter are the same size) are generally used when downhole circulating temperatures are expected to be above 200°F. To achieve fit accuracy, the stator should be measured at 75°F. If the temperature exceeds 75°F, the measurements can be calculated to ensure accuracy of the stator and subsequent power section fit.

2-4

Increasing Power

Increasing the power output is achieved by increasing the length and number of stages of the power section. Since rotor/stator power is proportional to the number of stages of a power section, increasing the number of stages increases power. This can be accomplished by using an extended length power section. Extended power sections are used to produce more torque or to produce an equivalent amount of torque at a lower pressure drop, increasing power section life.

Factors Affecting Power Section Life

The most common mode of failure in power sections is damage to the stator elastomer. This is commonly known as chunking. "Chunks" or pieces of stator elastomer are torn or pulled away. This is caused when the frictional forces between the rotor and stator exceed the tensile strength of the elastomer.

Power section life can be lengthened by following the recommendations outlined below:

- Never exceed the recommended maximum operating differential pressures shown on the motor specification sheets given in Section 4 "Motor Specifications".
- Never exceed the recommended maximum flow rate shown on the motor specification sheets given in Section 4 "Motor Specifications".
- Be certain that the correct power section fit is chosen for the mud type and temperature.

2-5

02 MOTOR COMPONENTS

- When using oil-based drilling mud, consider the downhole operating temperatures as well as the aniline point (AP). The AP (i.e. temperature) of an oil is an indication of its tendency to cause swelling of the stator elastomer and is a measure of the oil's aromatic content. The lower the AP, the greater the swelling tendency. Generally, stator elastomer or bond degradation increases when the AP is lower than 160. The aniline point gives a measure of the solvent power of a petroleum product for aniline, which is related to its solvent power for many materials.
- Running а motor in oil based fluids at temperatures above the oil's AP allows the aromatic portion of the oil to penetrate and swell the elastomer which will reduce the strength and hardness. As the swelling increases the interference fit between the rotor and stator also increases. This will result in additional heat buildup which will lead to rapid destruction of the elastomer.
- Larger power section fits will minimize the potential for premature chunking.
- · Avoid or minimize motor stalls.
- Minimize the amount of trash (metal filings, etc.) in the drilling mud system.
- Monitor the age and condition of stator elastomer. Doing so can help reduce failures and assist in determining when to reline stators. Consult the power section manufacturer for their recommended "shelf life" criteria.

Rotor Jetting

Higher flow rates can be achieved by jetting the rotor using tungsten-carbide nozzles. Rotor nozzles allow higher drilling fluid circulation rates by diverting a portion of the drilling fluid through the center of the rotor. They can also be used to reduce bit speed at high flow rates. **NOTE:** The rotor must be gun drilled to allow for the fluid to bypass.

When the drilling requirements are within the operating criteria, either a solid rotor is used, or the rotor is fitted with a plug to prevent fluid bypass.

The following hydraulic equation may be used to determine jet size.

$$A = \sqrt{(Q^2 \times W) / (P \times 10,858)}$$

Where: A = Total cross sectional flow area of jet (in.2)

Q = Circulation rate (gpm) W = Drilling fluid weight (ppg) P = Differential pressure (psi)

Refer to Table 2-1 for the flow area of a particular jet size or Table 2-2 for the bypass flow for a particular jet size at a given differential pressure.

Refer to Section 5 "Formulas" for other hydraulic calculations.

Table 2-1 Jet Size

Table	2-1 Rotor Je	et Size and F	low Area
Jet Size	Flow Area	Jet Size	Flow Area
(in)	(in2)	(in)	(in2)
6/32	0.028	15/32	0.172
7/32	0.038	16/32	0.196
8/32	0.049	18/32	0.249
9/32	0.062	20/32	0.306
10/32	0.077	22/32	0.371
11/32	0.093	24/32	0.442
12/32	0.110	26/32	0.518
13/32	0.130	28/32	0.601
14/32	0.150	30/32	0.690

IBEX DRILLING SOLUTIONS

2		a
2	-	3

	Mud Weight		œ	ypass Flow	Rates (gpm)	at Various D	oifferential Pr	essures (psi	(
ner (III)	(bdd)	100 psi	200 psi	300 psi	400 psi	500 psi	600 psi	700 psi	800 psi	900 p
	water	14	19	23	27	30	33	36	38	41
0012	10	12	18	21	25	28	30	33	35	37
7011	12	1	16	20	23	25	28	30	32	34
	14	10	15	18	21	23	26	28	30	32
	water	17	25	31	35	40	43	47	50	53
0/30	10	15	23	28	32	36	40	43	46	48
70/0	12	14	21	26	29	33	36	39	42	44
	14	13	19	24	27	30	33	36	39	41
	water	28	39	48	55	62	68	72	78	83
00/01	10	25	36	44	50	57	62	67	11	75
70/07	12	23	33	40	46	52	56	61	65	69
	14	21	30	37	42	48	52	56	60	64
	water	40	56	69	80	68	86	105	113	119
00/01	10	36	51	63	73	81	89	96	103	109
70/71	12	33	47	58	99	74	81	88	94	66
	14	31	43	53	62	69	75	81	87	91
	water	54	11	94	108	121	133	144	153	162
11/20	10	50	20	86	<u>66</u>	111	121	131	140	147
10/1	12	45	64	78	06	101	111	120	128	135
	14	42	59	73	84	94	103	111	118	124
	water	71	100	123	142	158	174	187	200	212
16/37	10	65	91	112	129	145	158	171	183	193
70/01	12	59	84	102	118	132	145	156	167	175
	14	55	17	95	109	122	134	145	155	162
	water	06	127	155	179	200	220	237	254	268
10/37	10	82	116	142	164	183	201	217	232	245
10/01	12	75	106	129	150	167	183	198	211	221
	14	69	98	120	138	155	170	183	196	202

Table 2-2 Rotor Jet Bypass Flow at VariousMotor Differential Pressures

·<u>.</u>

Top Sub

The top sub is the upper most portion of the mud motor with an API tool joint box thread. The lower end of the top sub is an IBEX designed thread form that connects to the upper box thread of the stator. All top subs are bored for a float valve.

Rotor Catch

The rotor catch is a standard motor component which is inserted into the top of the rotor and runs inside the top sub. Its main function is to "catch" the entire motor in the event of a fractured or backed off housing connection including if this occurs at the upper stator/top sub connection.

Job Preparation

Motor Selection

Fluid type, rotary speed, bitt speed, hydraulics, circulating fluid data, formation characteristics, and motor diameter are some of the requirements needed to specify the proper motor.

Power Section Selection

The power section selected must provide the proper performance for the drilling application and is selected based on the power section's output vs. the bit that is used and formation both are being run in.

Motor Bend Angle

The bend angle is determined by the required build rates in degrees/100 ft. and can be found on the motor specification sheets given in Section 4 "Motor Specifications" to determine the proper build rates.

Rotor Jet Sizing

A rotor nozzle jet can be used to bypass flow should the flow rate exceed the recommended maximum. The nozzle is fitted in the rotor catch which allows a portion of the fluid to bypass through the ID of the rotor. This option must be selected prior to shipping to the rig. (Refer to Table 2-1 and Table 2-2 for jet sizing.)

3-1

Top Sub and Bit Box Connections

It is necessary that the proper top and bottom connections of the motor be requested prior to the motor being assembled to match those being run at the rig site.

Stabilizers

It is recommended that the stabilizer be under gage by no less than ¹/₈" and not exceed ¹/₄." A ring gage should always be used to ensure that the stabilizer is within specification. If a screw on stabilizer is not required and either a screw on thread protector must be threaded to the bearing housing or a true slick bearing housing must be used.

Pre – Run Motor Evaluation and Set Up Visual Inspection

A visual inspection of the motor is recommended to check for any signs of external damage to the motor.

Stabilizers

If the bearing housing is threaded for a stabilizer, be sure that a stabilizer or screw on thread protector is used (Refer to Table 4-2 in Section 4 for recommended sleeve torque values).

Bearing Assembly Wear Measurements (Push / Pull)

Follow the steps below to determine if a motor is within acceptable wear limits for new or continued operation before or after a motor is run.

- Measure the off bottom or tension gap between the lower housing and bit box when the motor is hanging above the rig floor (Refer to L2 in Figure 1).
- Measure the on bottom or compression gap when the motor is standing on the rig floor (See L1 in Figure 3-1).
- For new or used motors subtract the hanging gap minus the standing gap (L2 - L1).
- 4.Lay the motor down if the difference between the hanging or standing gap exceeds the push/pull measurements in Table 3-1.

Figure 3-1 Push / Pull Measurements

RAM Push-Pull Measurements			
Motor Size	Max On Rig Floor		
5"	.130"		
5 3/8"	.135"		
5 1/2"	.135"		
6 5/8"	.145"		
6 3/4"	.145"		
7 1/8"	.145"		
8 1/4"	.170"		

Table 3-1 Push / Pull Measuremer	Its
----------------------------------	-----

Running IBEX Mud Motors

Running In

When the motor is set at a non-zero bend angle it is recommended to run in the hole at a controlled rate and should be done when running the drill string through the blow out preventers, casing shoes, liner hangers, ledges, or key seats to ensure that the motor or drill bit does not hang up. Do not run into bottom or "bottom fill," as it could plug the bit or damage the motor.

A straight motor can be run in the hole normally.

Starting the Motor

- 1. Begin circulating the motor "off bottom" allowing the bit to turn freely.
- Continue circulating until the desired flow rate is achieved.
- 3.Maintain flow rates within the recommended min/max range. Doing so will reduce the potential for motor damage.
- 4.Record the off-bottom pressure.

Drilling

- 1.Slowly lower the motor to bottom. Once on bottom and weight is applied, the standpipe pressure will increase producing differential pressure.
- 2.Slowly increase the weight on bit (WOB) until the desired rate of penetration (ROP) has been achieved. The WOB will likely need to be adjusted to maintain the optimal ROP.

The standpipe pressure will gradually increase after hole cleaning due to the hydraulic energy required to lift the cuttings. Therefore, it may become necessary to periodically recheck the off-bottom pressure.

Bit torque is produced while the motor is on bottom. The torque is directly proportional to the difference between the on bottom and off bottom pressure.

- As the WOB is increased so does the bit torque.
- As the bit drills off, the WOB, pressure, and torque decrease. Therefore, the standpipe pressure gage can be used as a torque indicator.

Rotary RPM

Fatigue loading on the motor can be produced when the bend settings are within recommended values. Therefore, it is recommended that the rotary speed not exceed the values in Table 3-2. Doing so will reduce the rotational bending fatigue loads across the motor which will reduce the potential for a motor failure.

3-7

6

Stalling

When a stall occurs the drill bit becomes overloaded causing the differential pressure to increase and the ROP to decrease to zero. When this occurs, the drilling fluid distorts the stator elastomer and flows through the motor without the rotor turning.

The steps below are recommended to immediately be followed should a stall occur.

- 1. Immediately shut down the rotary table.
- 2. If needed, shut the pumps off.
- Slowly release the trapped torque using the rotary table break.
- 4. Lift the bit off bottom.

If the above stall procedures are not followed, the following may occur."

- The trapped torque in the drill string will be released which can cause motor connections to backoff or cause damage to other components in the BHA.
- If continuous circulation through a stalled motor or repeated stalling occurs, the stator elastomer can become damaged causing chunking to occur along with the potential for internal motor component damage.

Bit Pressure Drop

The bit pressure drop should not exceed 1500 PSI. Exceeding this value increases the chance of bearing failure.

Tripping Out of the Hole and Surface Checking

- No special procedures are required when tripping out of the hole.
- When the motor reaches the rig floor, a visual inspection is recommended to check for any signs of external damage to the motor. Also check for the bit push/pull measurements and record.
- Prior to laying down or racking back the motor for an extended period of time, it is recommended to pump fresh water through the motor, so it is flowing out of the bit box or bit jets. Doing so will flush out any oil base or elevated brine content drilling fluids that can cause damages to the motors internal components in general or should it be rerun.

Drilling Fluid Selection

Selecting the proper drilling fluid is important to extending motor life and performance as well as aiding in drilling operations. Various fluid additives can be detrimental to the rotor and/or stator elastomer.

Chlorides

Drilling fluids containing chlorides, especially at elevated temperatures, can considerably reduce rotor and stator life due to corrosion.

Although some motor companies offer tungsten carbide rotors for high chloride content applications, the majority offer chrome coated rotors. The effects of chlorides can be detrimental to rotor's chrome coating. Therefore, if chrome rotors are used, the chloride concentration should not exceed 30,000 PPM.

Oil Based Mud

IBEX mud motors can be run in oil base mud (OBM) provided the operating temperature is less than the aniline point (AP) of the oil. The AP is an estimated value of the oil's aromatic content.

If a motor is run in oil base fluids at a temperature above the oil's AP the aromatic portion of the oil will penetrate the stator elastomer causing it to swell, reduce the hardness, strength and require reline after each run – To minimize the potential for chunking, a looser fit power section with less interference or clearance can be used to limit the effects of swelling. However, the risk is greater at the beginning of the run for the potential to stall the motor due to the looser fit.

3-10

Mud Density

Drilling mud with a density greater than 16.0 lbs/gal can cause irregular erosion of internal motor components including stator elastomer due to suspended materials in the mud.

Recommended mud density in drilling fluids:

- Sand content should not exceed 2%.
- Corrected solid content should not exceed 18%.
- Low gravity solid content should not exceed 6%.

Air or 2 Phase Drilling Types

- Mist Occurs when the liquid fraction is greater than 2.5% at the downhole operating conditions ensuring the liquid remains as droplets within the gas.
- Foam Occurs when the liquid fraction is between 2.5% 25% at downhole operating conditions. Foam is specified as "% foam quality". This is the volume fraction of the gas. Therefore, 60% foam quality is 60% gas and 40% liquid by volume.
- Aerated Mud Occurs when the liquid fraction is greater than 25% at downhole operating conditions. In this circumstance, gas stays as bubbles in the liquid.

Recommended Operations Requirement

- Air Volume 3 to 4 standard cubic feet per minute (scfm) = 1 gallon per minute (gpm) of drilling fluid.
 Example – 400 gpm = 1,200 -1,600 scfm.
- Foam Volume 3 ½ 4 ½ scfm of air plus a range of 10-100 gpm of foam injection is recommended.
- **Pressure** Approximately 2 times the amount required with normal fluids.

Lubricants

Running with dry air can cause frictional heat build up between the rotor and stator causing the stator to chunk resulting in shorter than expected run times. Therefore, it is necessary to make sure the elastomer is lubricated.

A lubricant created from a mixture of soap/gel and water that is injected at approximately 5% rate by volume is sufficient for most applications.

Standard Lubricants

Liquid Soap	½ to	1 gal	per	barrel	of wa	ter
Graphite	4 to	6 lbs	per	barrel	of wa	ter
Gel	½ to	1 lbs	per	barrel	of wa	ter
Oil		0.1	to 0	.6 gal	per ho	bur

CFM/GPM Calculation

Equivalent GPM for Gas Without Temp Change Used

Equivalent GPM = <u>Total CFM</u> x Unit Conversion Factor Compression Ratio

Compression Ratio = <u>Operation Pressure</u> Atmospheric Pressure

Atmospheric Pressure at sea level = 14.7psi Unit Conversion Factor = 7.48 gallons/ft³

Example: 625psi operating pressure for 4250cfm, 3800cfm

Equivalent GPM = 4250*7.48/(625/14.7) = 748gpm Equivalent GPM = 3800*7.48/(625/14.7) = 669gpm

Total GPM = Fluid GPM + Equivalent Gas GPM Example: 750gpm mud + 1500cfm air@600psi GPM = 750gpm + 1500/(600/14.7)*7.48 GPM = 1025gpm equivalent at injection point

Operating pressure at depth (total compression pressure) Total compression pressure = injection pressure + hydrostatic column pressure Example: 2000ft depth – pressure column – 0.35psi/ft(?) Hydrostatic pressure = 2000*0.35 = 700psi Gas GPM equivalent = 1500/((600+700)/14.7)*7.48 = 127qpm

Example: 6000ft depth @ 0.35psi/ft = 2100psi with gas injection pressure of 600psi Gas GPM equivalent = 1500/((600+2100)/14.7)*7.48 = 61gpm

Motor Operation With Air or 2 Phase

When drilling with air, the motor will:

- Require less weight on bit to drill.
- Be more weight sensitive the with fluids.
- Stall at lower pressure

It is recommended to let the motor drill off as the compressors and boosters are being shut down after drilling is completed. Then, prior to picking up the motor from bottom, it is recommended to allow for the pressure to equalize. If the motor is picked up prior to the pressure equalizing, the air within the drill string can expand which will cause high motor speeds that can cause damage to the motor up to causing internal motor connections to back off.

Motor Selection for Air or 2 Phase Application

Sealed bearing assemblies are generally preferred for drilling in air or 2-phase drilling applications as air does not conduct heat as well as fluids. Mud lubricated bearing assemblies are susceptible to seizing due to overheating. However, this may not be an issue in aerated mud systems. Being able to minimize the temperature generated within the stator elastomer is critical when selecting a motor to rerun in an air or 2-phase application.

3-14

The following is recommended:

- Select a stator that ensures a loose power section fit compared to a fit that would be run in fluid at the same temperature range.
- Use the lowest foam amount and highest amount of liquid possible.
- Run the lowest rev/gal power section possible.
- Circulate for as much time as possible through the motor.

Drilling with Nitrogen

78% of air consists of nitrogen. The density of nitrogen is approximately 3% less than that of air at standard temperature and pressure. Therefore, a drilling motor will operate the same on air as nitrogen. NOTE: Stator elastomer, o-rings, seals, etc. are normally not affected by nitrogen. However, they will absorb nitrogen and other gases under pressure for an extended period. If the pressure is released too soon and the gases do not have time to exit from the seals, explosive decompression can occur which will cause blistering of the seals and chunking of the elastomer. Typically, this will occur if the pressure drop exceeds 400 psi across the motor.

Downhole Temperature

A reduction of stator elastomer strength can be caused by an increase of the downhole circulating temperature. When this occurs a reduction of the maximum recommended differential pressure drop across the power section should be made to reduce the probability of stator elastomer failure.

As shown in Figure 3-2, when the temperature is at or below 140° F it is not required to reduce the differential pressure. However, if the temperature is over 140° F, the maximum rated differential pressure obtained from the performance curves should be multiplied by the differential pressure reduction factor below.

The fit sections at the bottom of the chart - indicated as "Std Fit", "OS Fit" and "2xOS Fit"- indicate the recommended stator sizes to be used at temperature. While a standard fit stator can be used at temperatures higher than 220°F, it is susceptible to premature failure due to excessive interference fit, resulting in additional frictional heat increasing the potential for chunking.

Likewise, an oversized fit can be used at temperatures below 220°F. However, it may not perform as expected due to the looser fit. This enables fluid leakage at the seal lines of the rotor and stator, resulting in stalling and a weak motor.

EXAMPLE

If the maximum differential pressure is 900 psi and the downhole circulating temperature is 180° F, the operating full load pressure is calculated by multiplying 900 psi by a differential reduction factor of 77%, yielding 693 psi.

03 OPERATING DATA

NOTE: IBEX assembles power sections based on actual fits vs. the proposed downhole circulating temperature range and mud type. Therefore, power sections or not sized by using a designated standard size stator for a low temperature application or an oversized stator for a hot temperature application. Therefore, IBEX recommends assembling power sections by actual fit vs the maximum circulating temperature of the proposed run. This is recommended due to the tolerance range of the stators elastomer which can range from +/- .010" to +/- .015" depending on the stator vendor which can result in a +/- .020" to .030" measurement swing. This large variance can result in a power section fit that is either too tight or too loose resulting in the potential for elastomer failure or stalling causing the motor to be weak.

5" 5/6 Lobe 6.7 Stage

RPG

0.630

GPM

150 - 350

RPM

90 - 220

	5.00" 5/						
Motor OD			5.00	inch			
Lobe Configu	uration Bit		5 - 6 Lobe	6.7 Stage			
Size Range			6 - 7 7/	8 inches			
Bit Box Conn	ection		3 1/2 RE	G or NC40			
A = Bit to Sta	balizer (Cente	er)	NA				
B = Bit to Be	nd - Flex Shaf	t	52.40	inches			
B = Bit to Be	nd - Fixed		52.40	inches			
B = Bit to Be	nd - Adjustable	e	NA				
C = Overall - (w/Top Sub)	Flex Shaft		373.92 inches				
C = Overall (with Top Sub)		373.92inches				
Adjustable M	akeup Torque		NA				
Weight			1700				
Max WOB - w	/Flow		57,970 lbs				
Optimum WO	ptimum WOB - w/Flow		28,985 lbs		28,985 lbs		
Max WOB - w	ax WOB - w/o Flow		144,925 lbs		144,925 lbs		
Max Bit Pull	Max Bit Pull - w/Damage		252,000 lbs				
Rev. Per Gallon	Flow Rate Range	Bit Speed Range	Torque Output	Max Diff Pressure	I		

Ft. Lbs

6,330

PSI

1,580

5.00" 5/6 6.7 STAGE HR								
CAL	CULATED	BUILD UP	P RATES -	DEGREES	6 / 100ft.	* (Flex Sh	aft Fixed)	
	Hole	Size (in)	– Slick Sl	eeve	Ho	e Size (in) - Stabiliz	zed
Aligie (Deg)	6"	6 1/8"	6 3/4"	7 7/8"	6"	6 1/8"	6 3/4"	7 7/8"
0.25	1.0	0.8			1.0	1.0	1.3	1.8
0.50	2.4	2.2	1.1		2.3	2.3	2.6	3.1
0.75	3.8	3.6	2.5	0.5	3.6	3.7	3.9	4.4
1.00	5.2	5.0	3.9	1.9	4.9	5.0	5.3	5.7
1.25	6.6	6.4	5.3	3.3	6.3	6.3	6.6	7.1
1.50	8.0	7.8	6.7	4.7	7.6	7.6	7.9	8.4
1.75	9.5	9.2	8.1	6.1	8.9	9.0	9.2	9.7
2.00	10.9	10.6	9.5	7.5	10.2	10.3	10.6	11.0
2.25	12.3	12.0	10.9	8.9	11.6	11.6	11.9	12.4
2.50	13.7	13.4	12.3	10.3	12.9	13.0	13.2	13.7
2.75	15.1	14.8	13.7	11.7	14.2	14.3	14.5	15.0

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

4-1

5" 6/7 Lobe 8.8 Stage

5.00" 6/7 8.8 Stage Flex CV							
Motor OD			5.00) inch			
Lobe Configu	ration Bit		6 - 7 Lobe 8.8 Stage				
Size Range			6 - 7 7/	8 inches			
Bit Box Conn	ection		3 1/2 R	EGULAR			
A = Bit to Sta	balizer (Cente	er)	24.50	inches			
B = Bit to Ber	nd - Flex Shaft	t	52.44	inches			
B = Bit to Ber	nd - Fixed		52.44	inches			
B = Bit to Ber	nd - Adjustable	e	NA				
C = Overall - Flex Shaft (w/Top Sub)			399.53inches				
C = Overall (with Top Sub)			399.53 inches				
Adjustable M	akeup Torque	,	NA				
Weight			1700				
Max WOB - w	/Flow		57,970 lbs				
Optimum WO	B - w/Flow		28,985 lbs				
Max WOB - w	/o Flow		144,925 lbs				
Max Bit Pull -	w/Damage		252,000 lbs				
Rev. Per Gallon	lev. Per Flow Rate Bit Speed Gallon Range Range		Torque Output	Max Diff Pressure			
RPG	GPM	RPM	Ft. Lbs	PSI			
0.66	150 - 400	100 - 260	7,660	2,070			

5.00" 6/7 8.8 STAGE HR								
CAL	CULATED	BUILD UP	P RATES -	DEGREES	s / 100ft.	* (Flex Sh	aft Fixed)	
	Hole	Size (in)	- Slick Sl	eeve	Hol	e Size (in) - Stabiliz	zed
Angle (Deg)	6"	6 1/8"	6 3/4"	7 7/8"	6"	6 1/8"	6 3/4"	7 7/8"
0.25	1.0	0.8			1.0	1.0	1.3	1.8
0.50	2.4	2.2	1.1		2.3	2.3	2.6	3.1
0.75	3.8	3.6	2.5	0.5	3.6	3.7	3.9	4.4
1.00	5.2	5.0	3.9	1.9	4.9	5.0	5.3	5.7
1.25	6.6	6.4	5.3	3.3	6.3	6.3	6.6	7.1
1.50	8.0	7.8	6.7	4.7	7.6	7.6	7.9	8.4
1.75	9.5	9.2	8.1	6.1	8.9	9.0	9.2	9.7
2.00	10.9	10.6	9.5	7.5	10.2	10.3	10.6	11.0
2.25	12.3	12.0	10.9	8.9	11.6	11.6	11.9	12.4
2.50	13.7	13.4	12.3	10.3	12.9	13.0	13.2	13.7
2.75	15.1	14.8	13.7	11.7	14.2	14.3	14.5	15.0

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

4-2

5" 6/7 Lobe 8.8 Stage RSS Assist

	5.15" 6/	7 8.8 Stag	e Flex CV		
Motor OD			5.15	inch	
Lobe Configu	ration		6 - 7 Lobe 8.8 Stage		
Bit Size Rang	le		6 - 7 7/	8 inches	
Bit Box Conn	ection		XT	39	
A = Bit to Sta	balizer (Cente	er)	24.7 ir	nches	
B = Bit to Ber	nd - Flex Shaft	t	N	A	
B = Bit to Ber	nd - Fixed		N	A	
B = Bit to Ber	nd - Adjustable	•	N	A	
C = Overall - Flex Shaft (w/Top Sub)			384.86 inches		
C = Overall (with Top Sub)		384.86 inches		
Adjustable M	akeup Torque		NA		
Weight			1700		
Max WOB - w	/Flow		57,970 lbs		
Optimum WO	B - w/Flow		28,985 lbs		
Max WOB - w	/o Flow		144,925 lbs		
Max Bit Pull - w/Damage			252,000 lbs		
Rev. Per Gallon	ev. Per Flow Rate Bit Speed Sallon Range Range		Torque Output	Max Diff Pressure	
RPG	GPM	RPM	Ft. Lbs	PSI	
0.66	150 - 400	100 - 260	7 660 2 070		

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

5" 7/8 Lobe 8.3 Stage

Motor OD			5.13) inch	
Lobe Configu	ration		7 - 8 Lobe 8.3 Stage		
Bit Size Rang	le		6 - 7 7/	8 inches	
Bit Box Conn	ection		3 1/2 R	EGULAR	
A = Bit to Sta	balizer (Cente	er)	١	AA.	
B = Bit to Ber	nd - Flex Shaft	t	52.40	inches	
B = Bit to Ber	nd - Fixed		52.40	inches	
B = Bit to Ber	nd - Adjustable	•		NA	
C = Overall - Flex Shaft (w/Top Sub)			384.90 inches		
C = Overall (v	with Top Sub)		384.90 inches		
Adjustable M	akeup Torque		NA		
Weight			1700		
Max WOB - w	/Flow		57,970 lbs		
Optimum WO	B - w/Flow		28,985 lbs		
Max WOB - w	/o Flow		144,925 lbs		
Max Bit Pull -	w/Damage		252,000 lbs		
			-		
Gallon	Rev. Per Flow Rate Bit Speed Gallon Range Range		Output	Pressure	
RPG	GPM	RPM	Ft. Lbs	PSI	
0.66	150 - 400 100 - 260		7.660	2.070	

5.15" 7/8 8.3 STAGE							
CALCULATED	CALCULATED BUILD UP RATES - DEGREES / 100ft. * (Flex Shaft Fixed)						
		Hole S	Size (in) -	True Slic	k		
A	igie (Deg)	6"	6 1/8"	6 3/4"	7 7/8"		
	0.25						
	0.50	0.3	0.7				
	0.75	1.3	0.8				
	1.00	2.8	2.4	0.3			
	1.25	4.4	3.9	1.8			
	1.50	5.9	5.5	3.4	0.5		
	1.75	7.5	7.1	5.0	1.1		
	2.00	9.1	8.6	6.5	2.7		
	2.25	10.6	10.2	8.1	4.2		
	2.50	12.2	11.7	9.6	10.3		
	2.75	13.7	13.3	11.2	11.7		

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

5" 7/8 Lobe 8.3 Stage - RSS Assist

5.00" 7/8 8.3 Stage HR Flex-SHAFT					
lotor OD	5.00 inch				
obe Configuration 7	- 8 Lobe 8.3 Stage				
it Size Range	6 - 7 7/8 inches				
it Box Connection	3 1/2 REGULAR				
= Bit to Stabalizer (Center)	24.50 inches				
= Bit to Bend - Flex Shaft	NA				
: = Overall - Flex Shaft w/Top Sub)	384.96 inches				
/eight	1,700 lbs				
lax WOB - w/Flow	57,970 lbs				
ptimum WOB - w/Flow	28,985 lbs				
lax WOB - w/o Flow	144,925 lbs				
lax Bit Pull - w/Damage	252,000 lbs				

Rev. Per Gallon	Flow Rate Range	Bit Speed Range	Torque Output	Max Diff Pressure	
RPG	GPM	RPM	Ft. Lbs	PSI	
0.50	200 - 400	200 - 400	9,370	1,960	

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

5 3/8" 5/6 Lobe 9.9 Stage

5.38" 5/6 9.9 Stage HR						
Motor OD	5.38 inch					
Lobe Configuration	5 - 6 Lobe 9.9 Stage					
Bit Size Range	6 1/2 - 7 7/8 inches					
Bit Box Connection	NC 40					
A = Bit to Stabalizer (Center)	21.00 inches					
B = Bit to Bend - Flex Shaft	54.53 inches					
C = Overall - Flex Shaft (w/Top Sub)	402.38 inches					
Weight	1,700 lbs					
Max WOB - w/Flow	43,500 lbs					
Optimum WOB - w/Flow	21,750 lbs					
Max WOB - w/o Flow	210,000 lbs					
Max Bit Pull - w/Damage	210,000 lbs					

Rev. Per Gallon	Flow Rate Range	Bit Speed Range	Torque Output	Max Diff Pressure	
RPG	GPM	RPM	Ft. Lbs	PSI	
0.70	250 - 450	180 - 320	8,260	2,330	

5.38" 5/6 9.9 STAGE HR										
	CALCULATED BUILD UP RATES - DEGREES / 100ft. *									
Angle (Deg)	Hole	Size (in)	- Slick Sle	eeve	Hol	e Size (in) - Stabali	zed		
Angle (Deg)	6"	6 1/8"	6 3/4"	7 7/8"	6"	6 1/8"	6 3/4"	7 7/8"		
0.25	1.3	0.7	0.3		0.9	1.1	1.2	1.6		
0.50	2.6	2.0	1.7		2.2	2.3	2.4	2.9		
0.75	4.0	3.4	3.0	1.3	3.5	3.6	3.7	4.1		
1.00	5.4	4.8	4.4	2.7	4.7	4.9	5.0	5.4		
1.25	6.7	6.2	5.8	4.0	6.0	6.2	6.2	6.7		
1.50	8.1	7.5	7.1	5.4	7.3	7.4	7.5	8.0		
1.75	9.5	8.9	8.5	6.8	8.5	8.7	8.8	9.2		
2.00	10.8	10.3	9.9	8.1	9.8	10.0	10.1	10.5		
2.25	12.2	11.6	11.3	9.5	11.1	11.2	11.3	11.8		

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

5 1/2" 5/6 Lobe 9.9 Stage

5.50" 5/6 9.9 Stage HR Flex-Shaft							
Motor OD	5.50 inch						
Lobe Configuration	5 - 6 Lobe 9.9 Stage						
Bit Size Range	6 1/2 - 7 7/8 inches						
Bit Box Connection	NC-40 / 3 1/2 reg						
A = Bit to Stabalizer (Center)	N/A inches						
B = Bit to Bend	54.53 inches						
C = Overall - Flex Shaft (w/Top Sub)	402.00 inches						
Weight	1,950 lbs						
Max WOB - w/Flow	57,970 lbs						
Optimum WOB - w/Flow	23,2500 lbs						
Max WOB - w/o Flow	146,750 lbs						
Max Bit Pull - w/Damage	220,000 lbs						

Rev. Per Gallon	Flow Rate Range	Bit Speed Range	Torque Output	Max Diff Pressure	
RPG	GPM	RPM	Ft. Lbs	PSI	
0.70	250 - 450	180 - 320	8,260	2,330	

5.50" 5/6 9.9 STAGE HR Flex-Shaft								
CALCULATED BUILD UP RATES - DEGREES / 100ft. *								
Angle (Deg)	Hole	Size (in)	- Slick Sle	eeve	Hol	e Size (in) - Stabali	zed
Angle (Deg)	6"	6 1/8"	6 3/4"	7 7/8"	6"	6 1/8"	6 3/4"	7 7/8"
0.25	1.3	0.7	0.3		0.9	1.1	1.2	1.6
0.50	2.6	2.0	1.7		2.2	2.3	2.4	2.9
0.75	4.0	3.4	3.0	1.3	3.5	3.6	3.7	4.1
1.00	5.4	4.8	4.4	2.7	4.7	4.9	5.0	5.4
1.25	6.7	6.2	5.8	4.0	6.0	6.2	6.2	6.7
1.50	8.1	7.5	7.1	5.4	7.3	7.4	7.5	8.0
1.75	9.5	8.9	8.5	6.8	8.5	8.7	8.8	9.2
2.00	10.8	10.3	9.9	8.1	9.8	10.0	10.1	10.5
2.25	12.2	11.6	11.3	9.5	11.1	11.2	11.3	11.8

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

5 1/2" 6/7 Lobe 8.8 Stage

5.50" 6/7 8.8 Stage HR						
Motor OD	5.50 inch					
Lobe Configuration	6 - 7 Lobe 8.8 Stage					
Bit Size Range	6 1/2 - 7 7/8 inches					
Bit Box Connection	3 1/2 REG or NC 40					
A = Bit to Stabalizer (Center)	N/A					
B = Bit to Bend - Flex Shaft - Fixed	54.53 inches					
C = Overall - Flex Shaft - Fixed (w/Top Sub)	398.02 inches					
Weight	1,700 lbs					
Max WOB - w/Flow	46,500 lbs					
Optimum WOB - w/Flow	23,250 lbs					
Max WOB - w/o Flow	146,750 lbs					
Max Bit Pull - w/Damage	220,000 lbs					

Rev. Per Gallon	Flow Rate Range	Bit Speed Range	Torque Output	Max Diff Pressure	
RPG	GPM	RPM	Ft. Lbs	PSI	
0.66	150 - 400	100 - 260	7,660	2,070	

5.50" RAM 6/7 8.8 STAGE HR CALCULATED BUILD UP RATES -								
DEGREES / 100ft. * (FIXED)								
	Н	ole Size (i	n) - Slick	Sleeve	н	lole Size (in) - Stab	alized
Angle (Deg)		6 1/2"	6 3/4"	7 7/8"		6 1/2"	6 3/4"	7 7/8"
0.25		1.5	0.6	-		0.7	0.9	1.3
0.50		2.7	1.8	-		1.9	2.1	2.5
0.75		4.0	3.0	1.4		3.0	3.2	3.6
1.00		5.2	4.3	2.6		4.2	4.4	4.7
1.25		6.5	5.6	3.9		5.3	5.6	5.9
1.50		7.7	6.8	5.2		6.5	6.7	7.1
1.75		9.0	8.0	6.4		7.6	7.8	8.2
2.00		10.2	9.3	7.6		8.8	9.0	9.4
2.25		11.5	10.6	8.9		10.0	10.2	10.6
2.50		12.7	11.8	10.2		11.2	11.4	11.8
2.75		14.0	13.0	11.4		12.3	12.5	12.9
3.00		15.2	14.3	12.6		13.4	13.7	14.0

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

5 1/2" 7/8 Lobe 8.3 Stage

5.50" 7/8 8.3 Stage HR							
Motor OD	5.50 inch						
Lobe Configuration	7 - 8 Lobe 8.3 Stage						
Bit Size Range	6 1/2 - 7 7/8 inches						
Bit Box Connection	3 1/2 REG or NC 40						
A = Bit to Stabalizer (Center)	N/A						
B = Bit to Bend - Flex Shaft - Fixed	54.5 inches						
C = Overall - Flex Shaft - Fixed (w/Top Sub)	385.02 inches						
Weight	1,750 lbs						
Max WOB - w/Flow	43,500 lbs						
Optimum WOB - w/Flow	21,750 lbs						
Max WOB - w/o Flow	210,000 lbs						
Max Bit Pull - w/Damage	210,000 lbs						

Rev. Per Gallon	Flow Rate Range	Bit Speed Range	Torque Output	Max Diff Pressure	
RPG	GPM	RPM	Ft. Lbs	PSI	
0.48	200 - 400	100 - 190	9,370	1,960	

5.50" RAM 7/8 8.3 STAGE HR CALCULATED BUILD UP RATES -								
DEGREES / 100ft. * (FIXED)								
Angle (Deg)	H	ole Size (i	n) - Slick	Sleeve	н	lole Size (in) - Stab	alized
Angle (Deg)		6 1/2"	6 3/4"	7 7/8"		6 1/2"	6 3/4"	7 7/8"
0.25		0.8	0.5	-		1.0	1.1	1.5
0.50		1.9	1.6	-		2.3	2.4	2.8
0.75		3.0	2.7	1.4		3.5	3.6	4.1
1.00		4.1	3.8	2.4		4.8	4.9	5.3
1.25		5.1	4.9	3.5		6.0	6.1	6.5
1.50		6.2	5.9	4.6		7.3	7.4	7.8
1.75		7.3	7.0	5.6		8.5	8.6	9.1
2.00		8.4	8.1	6.7		9.8	9.9	10.4
2.25		9.5	9.2	7.8		11.1	11.2	11.6
2.50		10.6	10.3	8.9		12.3	12.4	12.8
2.75		11.7	11.4	10.0		13.5	13.6	14.0
3.00		12.8	12.5	11.1		14.7	14.8	15.2

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

4-9

5 3/4" x 5 1/2" Combo 6/7 Lobe 8.8 Stage

5.50" - 5.75" 6/7 8.8 Stage HR							
Motor OD	5.50 inch - 5.75 inch						
Lobe Configuration	6 - 7 Lobe 8.8 Stage						
Bit Size Range	6 1/2 - 7 7/8 inches						
Bit Box Connection	3 1/2 REG or NC 40						
A = Bit to Stabalizer (Center)	N/A						
B = Bit to Bend - Flex Shaft - Fixed	54.50 inches						
C = Overall - Flex Shaft - Fixed (w/Top Sub)	398.03 inches						
Weight	1,700 lbs						
Max WOB - w/Flow	43,500 lbs						
Optimum WOB - w/Flow	21,750 lbs						
Max WOB - w/o Flow	N/A						
Max Bit Pull - w/Damage	210,000 lbs						

Rev. Per Gallon	Flow Rate Range	Bit Speed	Torque Output	Max Diff Pressure	
RPG	GPM	RPM	Ft. Lbs	PSI	
0.66	150 - 400	100 - 260	7,660	2,070	
	100 100	100 200	7,000	2,010	

5.50" - 5.75" RAM 6/7 8.8 STAGE HR CALCULATED BUILD UP RATES -								
DEGREES / 100ft. * (FIXED)								
Angle (Deg)	H	ole Size (i	n) - Slick	Sleeve	н	lole Size (in) - Stab	alized
Angle (Deg)		6 1/2"	6 3/4"	7 7/8"		6 1/2"	6 3/4"	7 7/8"
0.25		1.6	0.6	-		NA	NA	NA
0.50		2.8	1.9	-		NA	NA	NA
0.75		4.2	3.1	1.5		NA	NA	NA
1.00		5.4	4.5	2.7		NA	NA	NA
1.25		6.8	5.8	4.1		NA	NA	NA
1.50		8.0	7.1	5.4		NA	NA	NA
1.75		9.4	8.3	6.7		NA	NA	NA
2.00		10.6	9.7	7.9		NA	NA	NA
2.25		12.0	11.1	9.3		NA	NA	NA
2.50		13.3	12.3	10.6		NA	NA	NA
2.75		14.6	13.6	11.9		NA	NA	NA
3.00		15.9	14.9	13.1		NA	NA	NA

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

6 5/8" 5/6 Lobe 8.2 Stage

6.63" 5/6 8.2 S	tage HR
Motor OD	6.63 inch
Lobe Configuration	5 - 6 Lobe 8.2 Stage
Bit Size Range	7 7/8 - 9 7/8 inches
Bit Box Connection	4 1/2 REGULAR
A = Bit to Stabalizer (Center)	N/A inches
B = Bit to Bend - Fixed	60.63 inches
B = Bit to Bend - Adjustable	N/A inches
C = Overall (with Top Sub)	394.5 inches
Adjustable Makeup Torque	N/A ft. lbs
Weight	2,325 lbs
Max WOB - w/Flow	110,000 lbs
Optimum WOB - w/Flow	55,000 lbs
Max WOB - w/o Flow	275,000 lbs
Max Bit Pull - w/Damage	380,000 lbs

Rev. Per Gallon	Flow Rate Range	Bit Speed Range	Torque Output	Max Diff Pressure
	GPM	RPM	Ft. Lbs	PSI
0.430	300- 600	130 - 260	11,760	1,930

	6.63" 5/6 8.2 STAGE HR							
CALCULATED BUILD UP RATES - DEGREES / 100ft. * (FIXED)								
Angle (Deg)	Hole	Size (in)	- Slick Sle	eeve	Hol	e Size (in) - Stabali	zed
Angle (Deg)	7 7/8"	8 1/2"	8 3/4"	9 7/8"	7 7/8"	8 1/2"	8 3/4"	9 7/8"
0.25	2.2	1.6	1.4		1.5	1.9	2.0	2.7
0.50	3.5	3.0	2.7		3.0	3.4	3.5	4.1
0.75	4.8	4.2	4.0	3.0	4.5	4.9	5.0	5.6
1.00	6.1	5.5	5.3	4.2	6.0	6.4	6.5	7.1
1.25	7.4	6.9	6.7	5.6	7.5	7.8	8.0	8.6
1.50	8.7	8.2	8.0	6.9	9.0	9.3	9.4	10.1
1.75	10.1	9.4	9.2	8.3	10.5	10.8	10.9	11.6
2.00	11.3	10.8	10.4	9.5	12.0	12.3	12.4	13.0
2.25	12.7	12.1	11.9	10.8	13.5	13.8	13.9	14.5
2.50	14.0	13.5	13.1	12.2	14.9	15.3	15.4	16.0
2.75	15.3	16.0	14.5	13.5	16.4	16.7	16.9	17.5

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

4-11

6 5/8" 6/7 Lobe 7.8 Stage

6.63" 6/7 7.8 Stage HR						
Motor OD	6.63 inch					
Lobe Configuration	6 - 7 Lobe 7.8 Stage					
Bit Size Range	7 7/8 - 9 7/8 inches					
Bit Box Connection	4 1/2 REGULAR					
A = Bit to Stabalizer (Center)	28.7 inches					
B = Bit to Bend - Fixed	60.63 inches					
B = Bit to Bend - Adjustable	N/A inches					
C = Overall (with Top Sub)	424 inches					
Adjustable Makeup Torque	N/A ft. lbs					
Weight	2,325 lbs					
Max WOB - w/Flow	110,000 lbs					
Optimum WOB - w/Flow	55,000 lbs					
Max WOB - w/o Flow	275,000 lbs					
Max Bit Pull - w/Damage	380,000 lbs					

Rev. Per Gallon	Flow Rate Range	Bit Speed Range	Torque Output	Max Diff Pressure
RPG	GPM	RPM	Ft. Lbs	PSI
0.29	350 - 700	100 - 200	15,730	1,840

	6.63" 6/7 7.8 STAGE HR							
CALCULATED BUILD UP RATES - DEGREES / 100ft. * (FIXED)								
	Hole	Size (in)	- Slick Sle	eeve	Hole Size (in) - Stabalized			zed
Angle (Deg)	7 7/8"	8 1/2"	8 3/4"	9 7/8"	7 7/8"	8 1/2"	8 3/4"	9 7/8"
0.25	2.8	2.3	2.0		1.6	2.1	2.3	3.1
0.50	4.2	3.7	3.5		3.3	3.7	3.9	4.8
0.75	5.7	5.2	5.0	4.1	5.0	5.4	5.6	6.5
1.00	7.2	6.7	6.5	5.6	6.6	7.1	7.2	8.1
1.25	8.7	8.2	8.0	7.1	8.3	8.7	8.9	9.8
1.50	10.2	9.6	9.4	8.6	10.0	10.4	10.6	11.3
1.75	11.7	11.1	10.9	10.1	11.6	12.0	12.2	13.0
2.00	13.1	12.6	12.4	11.6	13.3	13.7	13.9	14.7
2.25	14.6	14.1	13.9	13.0	14.8	15.4	15.5	16.3
2.50	16.1	15.6	15.4	14.5	16.5	16.7	17.2	18.0
2.75	17.6	17.1	16.9	16.0	18.2	18.7	18.9	19.7

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

6 5/8" 6/7 Lobe 7.8 Stage 55" SBTB

6.63" 6/7 7.8 Stage SBTB HR					
Motor OD	6.63 inch				
Lobe Configuration	6 - 7 Lobe 7.8 Stage				
Bit Size Range	7 7/8 - 9 7/8 inches				
Bit Box Connection	4 1/2 REGULAR				
A = Bit to Stabilizer (Center)	NA				
B = Bit to Bend - Fixed	55.13 inches				
B = Bit to Bend - Adjustable	NA				
C = Overall (with Top Sub)	422.78 inches				
Adjustable Makeup Torque	N/A ft. lbs				
Weight	2,850 lbs				
Max WOB - w/Flow	110,000 lbs				
Optimum WOB - w/Flow	55,000 lbs				
Max WOB - w/o Flow	275,000 lbs				
Max Bit Pull - w/Damage	380,000 lbs				

Rev. Per Gallon	Flow Rate Range	Bit Speed Range	Torque Output	Max Diff Pressure
RPG	GPM	RPM	Ft. Lbs	PSI
0.29	350 - 700	100 - 200	15,730	1,840

	6.63" 6/7 7.8 STAGE SBTB HR							
CALCULATED BUILD UP RATES - DEGREES / 100ft. * (FIXED)								
Angle (Dec)	Hole Size (in) - Slick Sleeve Hole Size (in) - Stabalized							zed
Angle (Deg)	7 7/8"	8 1/2"	8 3/4"	9 7/8"	7 7/8"	8 1/2"	8 3/4"	9 7/8"
0.25	2.9	2.4	2.1		1.7	2.2	2.4	3.2
0.50	4.4	3.8	3.6		3.4	3.8	4.0	5.0
0.75	5.9	5.4	5.2	4.3	5.2	5.6	5.8	6.8
1.00	7.5	7.0	6.8	5.8	6.9	7.4	7.5	8.5
1.25	9.1	8.6	8.4	7.4	8.7	9.1	9.3	10.2
1.50	10.7	10.0	9.8	9.0	10.5	10.9	11.1	11.8
1.75	12.3	11.6	11.4	10.6	12.1	12.6	12.8	13.6
2.00	13.7	13.2	13.0	12.1	13.9	14.3	14.5	15.4
2.25	15.3	14.8	14.5	13.6	15.5	16.1	16.2	17.1
2.50	16.9	16.3	16.1	15.2	17.3	17.5	18.0	18.9
2.75	18.4	17.9	17.7	16.8	19.1	19.6	19.8	20.6

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

4-13

6 5/8" 6/7 Lobe 7.8 Stage RSS Assist

	6.63" 6	7 7.8 Sta	age HR R	SS
Motor OD			6.63	inch
Lobe Confi	guration		6 - 7 Lobe	7.8 Stage
Bit Size Ra	nge		7 7/8 - 9	7/8 inches
Bit Box Co	nnection		4 1/	2 IF
A = Bit to S	Stabalizer (C	Center)	N/A in	ches
B = Bit to E	Bend - Fixed		N/A in	ches
B = Bit to E	Bend - Adjus	table	N/A in	ches
C = Overall	= Overall (with Top Sub)		424. 03	inches
Adjustable	Makeup To	rque	N/A ft	. Ibs
Weight			2,32	5 lbs
Max WOB -	w/Flow		110,0	00 lbs
Optimum V	imum WOB - w/Flow		55,000 lbs	
Max WOB -	Max WOB - w/o Flow		275,000 lbs	
Max Bit Pu	II - w/Damag	ge	380,0	00 lbs
Day Day	Elow Boto	Die Owerst		Mary Diff

Rev. Per Gallon	Flow Rate Range	Bit Speed Range	Torque Output	Max Diff Pressure
RPG	GPM	RPM	Ft. Lbs	PSI
0.290	350 - 700	100 - 200	15,730	1,840

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

6 5/8" 7/8 Lobe 5.7 Stage

6.63" 7/8 5.7 Stage HR						
Motor OD	6.63 inch					
Lobe Configuration	7 - 8 Lobe 5.7 Stage					
Bit Size Range	7 7/8 - 9 7/8 inches					
Bit Box Connection	4 1/2 REGULAR					
A = Bit to Stabalizer (Center)	28.7 inches					
B = Bit to Bend - Fixed	60.63 inches					
B = Bit to Bend - Adjustable	N/A inches					
C = Overall (with Top Sub)	408.03 inches					
Adjustable Makeup Torque	N/A ft. lbs					
Weight	2,850 lbs					
Max WOB - w/Flow	110,000 lbs					
Optimum WOB - w/Flow	55,000 lbs					
Max WOB - w/o Flow	275,000 lbs					
Max Bit Pull - w/Damage	380,000 lbs					

Rev. Per Gallon	Flow Rate Range	ate Bit Speed Torque Range Output		Max Diff Pressure	
RPG	GPM	RPM	Ft. Lbs	PSI	
0.23	300 - 600	70 - 140	14,200	1,340	

6.63" 7/8 5.7 STAGE HR									
	CALCULATED BUILD UP RATES - DEGREES / 100ft. * (FIXED)								
Anala (Daa)	Hole	Size (in)	- Slick Sl	eeve	Hol	e Size (in) - Stabali	zed	
Angle (Deg)	7 7/8"	8 1/2"	8 3/4"	9 7/8"	7 7/8"	8 1/2"	8 3/4"	9 7/8"	
0.25	2.9	2.4	2.1		1.7	2.2	2.4	3.2	
0.50	4.4	3.8	3.6		3.4	3.8	4.0	5.0	
0.75	5.9	5.4	5.2	4.3	5.2	5.6	5.8	6.8	
1.00	7.5	7.0	6.8	5.8	6.9	7.4	7.5	8.5	
1.25	9.1	8.6	8.4	7.4	8.7	9.1	9.3	10.2	
1.50	10.7	10.0	9.8	9.0	10.5	10.9	11.1	11.8	
1.75	12.3	11.6	11.4	10.6	12.1	12.6	12.8	13.6	
2.00	13.7	13.2	13.0	12.1	13.9	14.3	14.5	15.4	
2.25	15.3	14.8	14.5	13.6	15.5	16.1	16.2	17.1	
2.50	16.9	16.3	16.1	15.2	17.3	17.5	18.0	18.9	
2.75	18.4	17.9	17.7	16.8	19.1	19.6	19.8	20.6	

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

6 5/8" 7/8 Lobe 5.7 Stage 55" SBTB

6.63" 7/8 5.7 Stage SBTB HR					
Motor OD	6.63 inch				
Lobe Configuration	7 - 8 Lobe 5.7 Stage				
Bit Size Range	7 7/8 - 9 7/8 inches				
Bit Box Connection	4 1/2 REGULAR				
A = Bit to Stabalizer (Center)	NA				
B = Bit to Bend - Fixed	55.13 inches				
B = Bit to Bend - Adjustable	NA				
C = Overall (with Top Sub)	406.78 inches				
Adjustable Makeup Torque	N/A ft. lbs				
Weight	2,850 lbs				
Max WOB - w/Flow	110,000 lbs				
Optimum WOB - w/Flow	55,000 lbs				
Max WOB - w/o Flow	275,000 lbs				
Max Bit Pull - w/Damage	380,000 lbs				

Rev. Per Gallon	Flow Rate Range	Flow Rate Bit Speed Torque Range Range Output		Max Diff Pressure
RPG	GPM	RPM	Ft. Lbs	PSI
0.23	300 - 600	70 - 140	14,200	1,340

6.63" 7/8 5.7 STAGE SBTB HR									
	CALCULATED BUILD UP RATES - DEGREES / 100ft. * (FIXED)								
Angle (Deg)	Hole	Size (in)	- Slick Sl	eeve	Hol	e Size (in) - Stabali	zed	
Aligie (Deg)	7 7/8"	8 1/2"	8 3/4"	9 7/8"	7 7/8"	8 1/2"	8 3/4"	9 7/8"	
0.25	2.9	2.4	2.1		1.7	2.2	2.4	3.2	
0.50	4.4	3.8	3.6		3.4	3.8	4.0	5.0	
0.75	5.9	5.4	5.2	4.3	5.2	5.6	5.8	6.8	
1.00	7.5	7.0	6.8	5.8	6.9	7.4	7.5	8.5	
1.25	9.1	8.6	8.4	7.4	8.7	9.1	9.3	10.2	
1.50	10.7	10.0	9.8	9.0	10.5	10.9	11.1	11.8	
1.75	12.3	11.6	11.4	10.6	12.1	12.6	12.8	13.6	
2.00	13.7	13.2	13.0	12.1	13.9	14.3	14.5	15.4	
2.25	15.3	14.8	14.5	13.6	15.5	16.1	16.2	17.1	
2.50	16.9	16.3	16.1	15.2	17.3	17.5	18.0	18.9	
2.75	18.4	17.9	17.7	16.8	19.1	19.6	19.8	20.6	

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

4-16

6 5/8" 7/8 Lobe 5.7 Stage 51" SSBTB - IB Stabilized

6.63" 7/8 5.7 Stage SBTB HR					
Motor OD	6.63 inch				
Lobe Configuration	7 - 8 Lobe 5.7 Stage				
Bit Size Range	7 7/8 - 9 7/8 inches				
Bit Box Connection	4 1/2 REGULAR				
A = Bit to Stabalizer (Center)	26.6 inches				
B = Bit to Bend - Fixed	51.0 inches				
B = Bit to Bend - Adjustable	NA				
C = Overall (with Top Sub)	402.38 inches				
Adjustable Makeup Torque	N/A ft. lbs				
Weight	2,850 lbs				
Max WOB - w/Flow	110,000 lbs				
Optimum WOB - w/Flow	55,000 lbs				
Max WOB - w/o Flow	275,000 lbs				
Max Bit Pull - w/Damage	380,000 lbs				

6.63" 7/8 5.7 STAGE SBTB HR								
CALCULATED BUILD UP RATES - DEGREES / 100ft. * (FIXED)								
	Angle (Deg)	7 7/8"	8 1/2"	8 3/4"				
	0.25	0.9	1.2	1.3				
	0.50	2.3	2.6	2.7				
	0.75	3.7	4.0	4.1				
	1.00	5.1	5.4	5.5				
	1.25	6.5	6.8	6.9				
	1.50	7.9	8.2	8.3				
	1.75	9.3	9.6	9.7				
	1.83	9.8	10.0	10.1				
	2.00	10.7	11.0	11.1				
	2.12	11.3	11.7	11.8				
	2.25	12.1	12.4	12.5				
	2.50	13.5	13.8	13.9				
	2.75	14.9	15.2	15.3				
	3.00	16.3	16.6	16.7				

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

4-17

6 5/8" 7/8 Lobe 5.7 Stage 51" SSBTB

6.63" 7/8 5.7 Stage HR SSBTB					
Motor OD	6.63 inch				
Lobe Configuration	7 - 8 Lobe 5.7 Stage				
Bit Size Range	7 7/8 - 9 7/8 inches				
Bit Box Connection	4 1/2 REGULAR				
A = Bit to Stabalizer (Center)	NA				
B = Bit to Bend - Fixed	51.00 inches				
B = Bit to Bend - Adjustable	NA				
C = Overall (with Top Sub)	408.03 inches				
Adjustable Makeup Torque	NA				
Weight	2,850 lbs				
Max WOB - w/Flow	110,000 lbs				
Optimum WOB - w/Flow	55,000 lbs				
Max WOB - w/o Flow	275,000 lbs				
Max Bit Pull - w/Damage	380,000 lbs				

Rev. Per Gallon	Flow Rate Range	Bit Speed Range	Torque Output	Max Diff Pressure
RPG	GPM	RPM	Ft. Lbs	PSI
0.23	300 - 650	70 - 150	14,200	1,340

	6.63" 7/8 5.7 STAGE HR SSBTB					
CALCULAT	TED BUILD	JP RATES	- DEGRE	ES / 100ft	t. * (FIXEI	
		Hole Size (in) - Slick Sleeve				
~	Angle (Deg)	7 7/8"	8 1/2"	8 3/4"	9 7/8"	
	0.25	2.8	2.4	2.1		
	0.50	4.3	3.8	3.6		
	0.75	5.7	5.4	5.2	4.3	
	1.00	7.3	7.0	6.8	5.8	
	1.25	9.1	8.6	8.4	7.4	
	1.50	10.7	10.0	9.8	9.0	
	1.75	12.3	11.6	11.4	10.6	
	2.00	13.7	13.2	13.0	12.1	
	2.25	15.3	14.8	14.5	13.6	
	2.50	16.9	16.3	16.1	15.2	
	2.75	18.4	17.9	17.7	16.8	

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

4-18

6 5/8" 7/8 Lobe 6.4 Stage

6.63" 6/7 7.8 Stage HR					
Motor OD	6.63 inch				
Lobe Configuration	7 - 8 Lobe 6.4 Stage				
Bit Size Range	7 7/8 - 9 7/8 inches				
Bit Box Connection	4 1/2 REGULAR				
A = Bit to Stabalizer (Center)	28.7 inches				
B = Bit to Bend - Fixed	60.63 inches				
B = Bit to Bend - Adjustable	N/A inches				
C = Overall (with Top Sub)	394.5 inches				
Adjustable Makeup Torque	N/A ft. lbs				
Weight	2,325 lbs				
Max WOB - w/Flow	110,000 lbs				
Optimum WOB - w/Flow	55,000 lbs				
Max WOB - w/o Flow	275,000 lbs				
Max Bit Pull - w/Damage	380,000 lbs				

Rev. Per Gallon	Flow Rate Range	Bit Speed Range	Torque Output	Max Diff Pressure
RPG	GPM	RPM	Ft. Lbs	PSI
0.27	300 - 650	80 - 180	13,630	1,510

6.50" 7/8 6.4 STAGE HR									
CALCULATED BUILD UP RATES - DEGREES / 100ft. * (FIXED)									
Angle (Deg)	Hole	Size (in)	- Slick Sle	eeve	Hol	e Size (in) - Stabali	zed	
Aligie (Deg)	7 7/8"	8 1/2"	8 3/4"	9 7/8"	7 7/8"	8 1/2"	8 3/4"	9 7/8"	
0.25	2.1	1.5	1.3		1.3	1.6	1.7	2.3	
0.50	3.3	2.7	2.5		2.7	3.0	3.1	3.6	
0.75	4.4	3.9	3.7	2.7	4.0	4.3	4.4	5.0	
1.00	5.6	5.1	4.9	3.9	5.4	5.7	5.8	6.4	
1.25	6.8	6.3	6.1	5.1	6.7	7.0	7.2	7.7	
1.50	8.0	7.5	7.3	6.3	8.1	8.4	8.5	9.1	
1.75	9.2	8.7	8.5	7.5	9.4	9.8	9.9	10.4	
2.00	10.4	9.9	9.6	8.7	10.8	11.1	11.2	11.8	
2.25	11.6	11.1	10.8	9.9	12.2	12.5	12.6	13.1	
2.50	12.8	12.2	12.0	11.0	13.5	13.8	14.0	14.5	
2.75	14.0	13.4	13.2	12.2	14.9	15.2	15.3	15.9	
3.00	15.2	14.6	14.4	13.4	16.2	16.5	16.7	17.2	

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

6 5/8" 7/8 Lobe 6.4 Stage 55" SBTB

6.63" 7/8 6.4 Stage SBTB HR						
Motor OD	6.63 inch					
Lobe Configuration	7 - 8 Lobe 6.4 Stage					
Bit Size Range	7 7/8 - 9 7/8 inches					
Bit Box Connection	4 1/2 REGULAR					
A = Bit to Stabalizer (Center)	NA					
B = Bit to Bend - Fixed	55.13 inches					
B = Bit to Bend - Adjustable	NA					
C = Overall (with Top Sub)	393.23 inches					
Adjustable Makeup Torque	N/A ft. lbs					
Weight	2,850 lbs					
Max WOB - w/Flow	110,000 lbs					
Optimum WOB - w/Flow	55,000 lbs					
Max WOB - w/o Flow	275,000 lbs					
Max Bit Pull - w/Damage	380,000 lbs					

Rev. Per Gallon	Flow Rate Range	Bit Speed Range	Torque Output	Max Diff Pressure
RPG	GPM	RPM	Ft. Lbs	PSI
0.23	300 - 600	70 - 140	14,200	1,340

6.63" 7/8 6.4 STAGE SBTB HR										
	CALCULATED BUILD UP RATES - DEGREES / 100ft. * (FIXED)									
Angle (Deg)	Hole	Size (in)	- Slick Sle	eeve	Hol	e Size (in) - Stabali	zed		
Aligie (Deg)	7 7/8"	8 1/2"	8 3/4"	9 7/8"	7 7/8"	8 1/2"	8 3/4"	9 7/8"		
0.25	2.9	2.4	2.1		1.7	2.2	2.4	3.2		
0.50	4.4	3.8	3.6		3.4	3.8	4.0	5.0		
0.75	5.9	5.4	5.2	4.3	5.2	5.6	5.8	6.8		
1.00	7.5	7.0	6.8	5.8	6.9	7.4	7.5	8.5		
1.25	9.1	8.6	8.4	7.4	8.7	9.1	9.3	10.2		
1.50	10.7	10.0	9.8	9.0	10.5	10.9	11.1	11.8		
1.75	12.3	11.6	11.4	10.6	12.1	12.6	12.8	13.6		
2.00	13.7	13.2	13.0	12.1	13.9	14.3	14.5	15.4		
2.25	15.3	14.8	14.5	13.6	15.5	16.1	16.2	17.1		
2.50	16.9	16.3	16.1	15.2	17.3	17.5	18.0	18.9		
2.75	18.4	17.9	17.7	16.8	19.1	19.6	19.8	20.6		

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

4-20

7 1/8" 5/6 Lobe 8.3 Stage

Motor OD 7.18ch	
Lobe Configuration 7 - 8 Lobe 8.5 Sta	ge
Bit Size Range 81/2 - 97/8 inche	s 4
Bit Box Connection 1/2 REGULAR incl	hes
A = Bit to Stabilizer (Center) 22.68 inches	
B = Bit to Bend - Fixed 54.75 inches	
B = Bit to Bend - Adjustable N/A	
C = Overall (with Top Sub) 408.05inches	
Adjustable Makeup Torque N/A	
Weight 3,300 lbs	
Max WOB - w/Flow 124,000 lbs	
Optimum WOB - w/Flow 67,000 lbs	
Max WOB - w/o Flow 300,000 lbs	
Max Bit Pull - w/Damage 400,000 lbs	

Rev. Per Gallon	Flow Rate Range	Bit Speed Range	Torque Output	Max Diff Pressure
RPG	GPM	RPM	Ft. Lbs	PSI
0.38	350 - 750	130-290	13,030	1,960

7.13" 5/6 8.3 STAGE HR									
CALCULATED BUILD UP RATES - DEGREES / 100ft. * (FIXED)									
Angle (Deg)	Hole	Size (in) - S	lick Sleeve	2	Hole	e Size (in) -	Stab liz e d		
Aligie (Deg)	7 7/8"	8 1/2"	8 3/4"	9 7/8"	7 7/8"	8 1/2"	8 3/4"	9 7/8"	
0.25	2.4	1.8	1.4		1.1	1.3	1.4	2.0	
0.50	3.6	3.0	2.6		2.4	2.8	2.9	3.3	
0.75	4.7	4.1	3.9	2.6	3.9	4.1	4.2	4.7	
1.00	5.9	5.3	5.1	3.9	5.3	5.5	5.6	6.1	
1.25	7.2	6.5	6.2	5.1	6.6	6.8	6.9	7.5	
1.50	8.4	7.7	7.4	6.3	8.0	8.3	8.4	8.8	
1.75	9.5	8.8	8.6	7.4	9.4	9.7	9.8	10.2	
2.00	10.8	10.0	9.8	8.6	10.8	11.0	11.1	11.6	
2.25	12.0	11.2	10.9	9.8	12.1	12.4	12.5	13.0	
2.50	13.0	12.4	12.1	11.0	13.5	13.8	13.9	14.3	
2.75	14.3	13.5	13.3	12.1	14.9	15.2	15.3	15.7	

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

4-21

7 1/8" 7/8 Lobe 8.5 Stage

7.13" 7/8 8.5 Stage HR						
Motor OD	7.13 inch					
Lobe Configuration	7 - 8 Lobe 8.5 Stage					
Bit Size Range	8 1/2 - 9 7/8 inches					
Bit Box Connection	4 1/2 REGULAR					
A = Bit to Stabilizer (Center)	22.68 inches					
B = Bit to Bend - Fixed	54.88 inches					
B = Bit to Bend - Adjustable	N/A					
C = Overall (with Top Sub)	426.13 inches					
Adjustable Makeup Torque	N/A					
Weight	3,400 lbs					
Max WOB - w/Flow	124,000 lbs					
Optimum WOB - w/Flow	67,000 lbs					
Max WOB - w/o Flow	300,000 lbs					
Max Bit Pull - w/Damage	400,000 lbs					

Rev. Per Gallon	Flow Rate Range	Bit Speed Range	Torque Output	Max Diff Pressure
RPG	GPM	RPM	Ft. Lbs	PSI
0.26	400 - 750	100 - 200	19,540	2,000

7.13" 7/8 8.5 STAGE HR									
CALCULATED BUILD UP RATES - DEGREES / 100ft. * (FIXED)									
Angle (Deg)	Hole	Size (in)	- Slick Sle	eeve	Hol	e Size (in) - Stabiliz	ed	
Aligie (Deg)	7 7/8"	8 1/2"	8 3/4"	9 7/8"	7 7/8"	8 1/2"	8 3/4"	9 7/8"	
0.25	2.4	1.8	1.4		1.1	1.3	1.4	2.0	
0.50	3.6	3.0	2.6		2.4	2.8	2.9	3.3	
0.75	4.7	4.1	3.9	2.6	3.9	4.1	4.2	4.7	
1.00	5.9	5.3	5.1	3.9	5.3	5.5	5.6	6.1	
1.25	7.2	6.5	6.2	5.1	6.6	6.8	6.9	7.5	
1.50	8.4	7.7	7.4	6.3	8.0	8.3	8.4	8.8	
1.75	9.5	8.8	8.6	7.4	9.4	9.7	9.8	10.2	
2.00	10.8	10.0	9.8	8.6	10.8	11.0	11.1	11.6	
2.25	12.0	11.2	10.9	9.8	12.1	12.4	12.5	13.0	
2.50	13.0	12.4	12.1	11.0	13.5	13.8	13.9	14.3	
2.75	14.3	13.5	13.3	12.1	14.9	15.2	15.3	15.7	

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

4-22

7 1/8" x 6 5/8" 7/8 Lobe 6.4 Stage Combo

7.13" - 6.63" 7/8 6.4 Stage Combo HR						
Motor OD	7.13 & 6.63 inch					
Lobe Configuration	7 - 8 Lobe 6.4 Stage					
Bit Size Range	7 7/8 - 9 7/8 inches					
Bit Box Connection	4 1/2 REGULAR					
A = Bit to Stabalizer (Center)	NA					
B = Bit to Bend - Fixed	54.75 inches					
B = Bit to Bend - Adjustable	NA					
C = Overall (with Top Sub)	394.52 inches					
Adjustable Makeup Torque	N/A ft. lbs					
Weight	2,850 lbs					
Max WOB - w/Flow	110,000 lbs					
Optimum WOB - w/Flow	55,000 lbs					
Max WOB - w/o Flow	275,000 lbs					
Max Bit Pull - w/Damage	380,000 lbs					

7.13" - 6.63" 7/8 8.5 STAGE COMBO HR									
CALCULATED BUILD UP RATES - DEGREES / 100ft. * (FIXED)									
Angle (Deg)	Hole	Size (in)	- Slick Sle	eeve	Hol	e Size (in) - Stabiliz	ed	
Aligie (Deg)	7 7/8"	8 1/2"	8 3/4"	9 7/8"	7 7/8"	8 1/2"	8 3/4"	9 7/8"	
0.25	2.4	1.8	1.4		1.1	1.3	1.4	2.0	
0.50	3.6	3.0	2.6		2.4	2.8	2.9	3.3	
0.75	4.7	4.1	3.9	2.6	3.9	4.1	4.2	4.7	
1.00	5.9	5.3	5.1	3.9	5.3	5.5	5.6	6.1	
1.25	7.2	6.5	6.2	5.1	6.6	6.8	6.9	7.5	
1.50	8.4	7.7	7.4	6.3	8.0	8.3	8.4	8.8	
1.75	9.5	8.8	8.6	7.4	9.4	9.7	9.8	10.2	
2.00	10.8	10.0	9.8	8.6	10.8	11.0	11.1	11.6	
2.25	12.0	11.2	10.9	9.8	12.1	12.4	12.5	13.0	
2.50	13.0	12.4	12.1	11.0	13.5	13.8	13.9	14.3	
2.75	14.3	13.5	13.3	12.1	14.9	15.2	15.3	15.7	

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

4-23

8 1/4" 7/8 Lobe 5.9 Stage

8.25" 7/8 5.9 Stage RAM				
Motor OD	8.25 inch			
Lobe Configuration	7 - 8 Lobe 5.9 Stage			
Bit Size Range	9 7/8 - 12 1/4 inches			
Bit Box Connection	6 5/8 REGULAR			
A = Bit to Stabalizer (Center)	24.50 inches			
B = Bit to Bend - Fixed	69.0 inches			
B = Bit to Bend - Adjustable	N/A			
C = Overall (with Top Sub)	466.4 inches			
Adjustable Makeup Torque	N/A			
Weight	4,750 lbs			
Max WOB - w/Flow	146,4900 lbs			
Optimum WOB - w/Flow	73,245 lbs			
Max WOB - w/o Flow	366,225 lbs			
Max Bit Pull - w/Damage	732,880 lbs			

Rev. Per Gallon	Flow Rate Range	Bit Speed Range	Torque Output	Max Diff Pressure
RPG	GPM	RPM	Ft. Lbs	PSI
0.16	400 - 900	60 - 140	21,870	1,390

8.25" 7/8 5.9 STAGE RAM CALCULATED BUILD UP RATES - DEGREES /								
100ft. * (F	IXED)							
Angle (Deg)	Hole Si	ze (in) - S	lick Sleev	e	Hole	Size (in) -	Stabalize	d
Angle (Deg)	9 7/8"	10 5/8"	12 1/4"		9 7/8"	10 5/8"	12 1/4"	
0.25	0.3				1.3	1.6	2.2	
0.50	1.3	0.7			2.5	2.8	3.4	
0.75	2.3	1.7	0.5		3.7	4.0	4.6	
1.00	3.4	2.8	1.5		4.9	5.2	5.8	
1.25	4.4	3.8	2.5		6.1	6.3	6.9	
1.50	5.5	4.9	3.6		7.2	7.5	8.1	
1.75	6.4	5.9	4.6		8.4	8.7	9.3	
2.00	7.4	6.8	5.7		9.6	9.9	10.5	
2.25	8.5	8.0	6.6		10.7	11.1	11.7	
2.50	9.5	9.0	7.6		12.0	12.3	12.9	
2.75	10.6	10.0	8.7		13.2	13.5	14.1	

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

4-24

8 ¼" 7/8 Lobe 7.0 Stage

8.25" 7/8 7.0 Stage RAM				
Motor OD	8.25 inch			
Lobe Configuration	7 - 8 Lobe 7.0 Stage			
Bit Size Range	9 7/8 - 12 1/4 inches			
Bit Box Connection	6 5/8 REGULAR			
A = Bit to Stabalizer (Center)	24.40 inches			
B = Bit to Bend - Fixed	69.0 inches			
B = Bit to Bend - Adjustable	N/A			
C = Overall (with Top Sub)	470.2 inches			
Adjustable Makeup Torque	N/A			
Weight	4,750 lbs			
Max WOB - w/Flow	146,4900 lbs			
Optimum WOB - w/Flow	73,245 lbs			
Max WOB - w/o Flow	366,225 lbs			
Max Bit Pull - w/Damage	732,880 lbs			

Rev. Per Gallon	Flow Rate Range	Bit Speed Range	Torque Output	Max Diff Pressure
RPG	GPM	RPM	Ft. Lbs	PSI
0.155	400 - 1000	60 - 160	25,210	1,650

8.25" 7/8 7.0 STAGE RAM CALCULATED BUILD UP RATES - DEGREES /								
100ft. * (F	IXED)							
	Hole Si	ize (in) - S	lick Sleev	e	Hole \$	Size (in) -	Stabalize	d
Angle (Deg)	9 7/8"	10 5/8"	12 1/4"		9 7/8"	10 5/8"	12 1/4"	
0.25	0.3				1.3	1.6	2.2	
0.50	1.3	0.7			2.5	2.8	3.4	
0.75	2.3	1.7	0.5		3.7	4.0	4.6	
1.00	3.4	2.8	1.5		4.9	5.2	5.8	
1.25	4.4	3.8	2.5		6.1	6.3	6.9	
1.50	5.5	4.9	3.6		7.2	7.5	8.1	
1.75	6.4	5.9	4.6		8.4	8.7	9.3	
2.00	7.4	6.8	5.7		9.6	9.9	10.5	
2.25	8.5	8.0	6.6		10.7	11.1	11.7	
2.50	9.5	9.0	7.6		12.0	12.3	12.9	
2.75	10.6	10.0	8.7		13.2	13.5	14.1	

Actual build rates are subject to varying factors including formation, weight on bit, etc.

Should the circulating temperature exceed 140° Fahrenheit, it is recommended to derate the differential pressure as shown in Figure 3-2.

4-25

IBEX DRILLING SOLUTIONS

Matter Circ (in)	Madel		Change	Bit to	a de la c	Children	л Г	Speed	Torque Slope	Мах	Pressure Diff	Torque	Power
ואוסרסו אזק (ווו)	Model	LODE	Sidges	Bend	KOLOF	Stator	LIOW	Rev/Gal	ft-Ib/psi	RPM	psi	ft-lb	ЧH
	500566.7	5/6	6.7	47.63"	241"	250"	150-350	0.63	4.02	220	1580	6330	265
5"	500678.8	6/7	8.8	47.63"	265"	275"	150-400	0.66	3.70	260	1760	6520	323
	515788.3	7/8	8.3	47.63"	253"	275"	200-400	0.48	4.80	190	1960	9370	339
5.38"	538569.9	5/6	9.9	54.53"	269"	292"	250-450	0.70	3.55	320	2330	8260	503
	550569.9	5/6	9 .9	54.53"	269"	292"	250-450	0.70	3.55	320	2330	8260	503
5.50"	550678.8	6/7	8.8	53.88"	265"	275"	150-400	0.66	3.70	260	1760	6520	323
	550788.3	7/8	8.3	53.88"	253"	275"	200-400	0.48	4.80	190	1960	9370	339
5.75" x 5.50" Combo	500678.8	6/7	8.8	47.63"	265"	275"	150-400	0.66	3.70	260	1760	6520	323
	663568.2	5/6	8.2	60.63"	239"	257"	300-600	0.43	6.10	260	1930	11760	582
1022	663677.8	6/7	7.8	60.63"	268"	275"	350-700	0.29	8.58	200	1840	15730	599
60.0	663785.7	7/8	5.7	64.25"	252"	260"	300-600	0.23	10.6	140	1340	14200	380
	663786.4	7/8	6.4	60.63"	238"	246"	300-650	0.27	9.06	180	1510	13630	467
6 7E'I	675785.0	7/8	5.0	64.25"	188"	194"	300-650	0.27	9.06	180	1180	10650	370
6/10	675785.7	7/8	5.7	64.25"	252"	260"	300-600	0.23	10.6	140	1340	14200	380
1104 2	700568.3	5/6	8.3	54.88"	252"	270"	400-750	0.38	6.68	290	1960	13030	719
cT-/	700788.5	7/8	8.5	54.88"	291"	309"	400-750	0.26	9.78	200	2000	19540	740
7.13" x 6.63" Combo	663786.4	7/8	6.4	60.63"	238"	246"	300-650	0.27	9.06	180	1510	13630	467
0 JE	800785.9	7/8	5.9	"00.69	284"	300"	400-900	0.16	15.77	140	1390	21870	580
67.0	800787.0	7/8	7.0	69.00"	292"	309"	400-1000	0.16	15.32	160	1650	25210	768

04 MOTOR SPECIFICATIONS

Table 4-1 Motor Specifications

04 MOTOR SPECIFICATIONS

Motor Size (in)	Make Up Torque (Ib-ft)
7.13"	29,070
7.13" x 6.63" Combo	29,070
8.25"	40,000

Table 4-2 Bearing Stabilizer Make Up Torques

Engineering Data

Formulas

Horsepower

Mechanical	$HP_m = \frac{T \times N}{5252}$	HP _m =motor mech.
(hp)	5252	noisepowei
· · /		T = torque (ft-lbs) N = speed (rpm)
Hydraulic	$HP_{h} = \frac{P \times Q}{1714}$	HP _h = hydraulic at bit P = pressure drop (psi) Q = flow rate (gpm)

Pressure

Bit Pressure Drop	$P = \frac{Q^2 \times W}{10858 \times A^2}$	P = pressure drop (psi) Q = flow rate (gpm) W = fluid/mud wt. (ppg) A = total flow area (in ²)
Hydrostatic	P = .052 x D x W	D = vertical depth (ft)

Velocity

Jet	V = <u>.32086 x Q</u> A	V = velocity (ft/s) Q = flow rate (gpm) A = jet flow area (in²)
Annular	$V = \frac{.4085 \times Q}{D_{h}^{2} - D_{p}^{2}}$	D_h = hole diameter (in) D_p = drill string OD (in)

Motor Efficiency

Motor Efficiency	% = <u>32.64 x T x N</u>	T = torque (ft-lbs)
	QxP	N = speed (rpm)
		Q = flow rate (gpm)
		P = pressure drop (psi)

Total Flow Area (TFA) to Obtain a Required Bit Pressure Loss

$$A = \sqrt{(Q^2 \times W) / (Pb \times 10,858)}$$

Where: A = Total cross sectional flow area of jet (in.²) Q = Circulation rate (gpm) W = Drilling fluid weight (ppg) Pb = Differential pressure (psi)

CONVERSION TABLES						
	Units	Multiply By	To Obtain			
Acceleration	ft/sec ²	0.3048	m/sec ²			
(Acc. of gravity)	32.2 ft/sec ²	0.3048	9.81 m/sec ²			
	m/sec ²	3.2808	ft/sec ²			
	deg (angle)	60	min			
Angle	deg (angle)	0.01745	rad			
	deg (angle)	3600	sec			
	in²	6.944 x 10 ⁻³	ft²			
	in²	6.4516	cm ²			
	in²	645.16	mm²			
Area	ft²	0.0929	m²			
Alea	ft²	144	in²			
	cm ²	0.155	in²			
	mm²	0.00155	in ²			
	m²	10.764	ft²			
	lb/gal	119.82	kg/m³			
	lb/gal	0.11982	g/cm³			
	lb/gal	7.48	lb/ft ²			
	lb/ft³	5.787 x 10 ⁻⁴	lbs/in³			
	lb/ft³	16.02	kg/m³			
Donsity	lb/in³	27679.7	kg/m³			
Density	lb/in³	27.6797	g/cm³			
	kg/m³	8.346 x 10 ⁻³	lb/gal			
	g/cm³	8.346	lb/gal			
	kg/m³	3.61 x ^{- 5}	lb/in ³			
	kg∕m³	0.006243	lb/ft³			
	g/cm³	0.03613	lb/in ³			
	joule	0.737557	ft-lb			
Epergy	ft-lb	1.35583	joule			
LIICIBY	ft-lb	1.286 x 10 ⁻³	Btu			
	Btu	777.6	ft-lb			

Conversion Tables

05 ENGINEERING DATA

CONVERSION TABLES - Continued					
	Units	Multiply By	To Obtain		
	bbl/min	42	gpm		
	bbl/day	0.02917	gpm		
	gpm	0.02381	bbl/min		
	gpm	34.286	bbl/day		
	gpm	3.785	lpm		
	gpm	3.785 x 10 ⁻³	m³/min		
	bbl/min	0.158899	m³/min		
	ft°/min	4.72 x ⁻⁴	m³/sec		
Flow Rate	ft°/min	0.1247	gal/sec		
	ft³/min	0.472	liters/sec		
	ft³/sec	448.83	gpm		
	lpm	0.2642	gpm		
	m³/min	264.2	gpm		
	m³/min	6.2933	bbl/min		
	m³/sec	2118.6	ft³/min		
	gal/sec	8.0515	ft³/min		
	liters/sec	2.1186	ft³/min		
	gpm	0.002228	ft³/sec		
	lbf	4.448	N		
	lbf	4.448 x 10 ⁻³	kN		
Force	lbf	0.4536	kgf		
Force	N	0.22481	lbf		
	kN	224.82	lbf		
	kgf	2.20459	lbf		
	in	25.4	mm		
	in	2.54	cm		
Length	ft	0.30479	m		
	ft	5280	mi		
	mi	1.609	km		
	mm	0.03937	in		
	cm	0.3937	in		
	m	3.2808	ft		
	km	0.6215	mi		

05 ENGINEERING DATA

CONVERSION TABLES - Continued						
	Units	Multiply By	To Obtain			
Marc	lb	0.453597	kg			
IVIdSS	lb	4.535 x 10 ⁻⁴	ton (metric)			
	kgf	2.2046	lbf			
	1/32 in	0.79375	mm			
Nozzles	mm	1.2598	1/32 in			
	hp	0.7457	kw			
	ft-lb/min	2.259 x 10-*	kw			
	ft-lb/s	1.6557	w			
Power	kw	1.34102	hp			
	kw	44250	ft-lb/min			
	w	0.7376	ft-lb/s			
	psi	6.8948	kPa			
	psi	0.0068948	Mpa			
	psi	0.0680462	atm			
	psi	0.068948	bar			
Pressure	atm	14.6959	psi			
	bar	14.50326	psi			
	kPa	0.14504	psi			
	Mpa	145.03684	psi			
	psi	0.0068948	Mpa			
	psi	0.0680462	bar			
	psi	14.6959	N/mm ²			
Stress	bar	14.50326	psi			
	Mpa	0.14504	psi			
	n/mm²	145.03684	psi			
	°F	(°F - 32) / 1.8	°C			
	°C	(°C x 1.8) + 32	°F			
Temperature	°F	°F + 459.69	°R			
	°C	°C + 273.16	°K			
	ft-lb	1.35582	Nm			
	ft-lb	0.00135582	kNm			
_	ft-lb	0.1382	kgm			
Torque	Nm	0.737561	ft-lb			
	kNm	737.561	ft-lb			
	kgm	7.23589	ft-lb			
	ft/min	0.508	cm/s			
	ft/min	0.01667	ft/sec			
	ft/min	0.01829	km/hr			
Velocity	ft/min	0.3048	m/min			
	ft/min	0.01136	mi/hr			
	cm/s	1.9685	ft/min			
	ft/sec	59.988	ft/min			
	km/hr	54.67	ft/min			
	m/min	3.281	ft/min			
	mi/hr	88.028	ft/min			
	gal (US)	3.785	lbf			
Mahama	gal (US)	0.003785	mª			
volume	ft°	0.02831	mª			
	bbl	0.1589	mª			

5-5

Buoyancy Factors for Steel Drill Collars

Mud Weight	Mud Weight	Buoyancy
(lbs/gal)	(kgf/l)	Factor
8.5	1.02	0.870
9.0	1.08	0.862
9.5	1.14	0.855
10.0	1.20	0.847
10.5	1.26	0.839
11.0	1.32	0.832
11.5	1.38	0.824
12.0	1.44	0.816
12.5	1.50	0.809
13.0	1.56	0.801
13.5	1.62	0.793
14.0	1.68	0.786
14.5	1.74	0.778
15.0	1.80	0.771
15.5	1.86	0.763
16.0	1.92	0.755
16.5	1.98	0.748
17.0	2.04	0.740
17.5	2.10	0.732
18.0	2.16	0.725

Example:

BF = Buoyancy Factor MW1 = Mud Weight (lbs/gal)

> BF = 1 - <u>MW 2</u> 7.83

BF = Buoyancy Factor MW2 = Mud Weight (kgf/l)

Note: lb/gal x .11983 = kgf/l

5-6

Collar Weights in Pounds Per Foot

OD of Drill	Bore of Drill Collar (in)												
Collar (in)	1	1 1/4	1 1/2	1 3/4	2	2 1/4	2 1/2	2 13/16	3	3 1/4	3 1/2	3 3/4	4
2 7/8	19	18	16										
3	21	20	18										
3 1/8	22	22	20										
3 1/4	26	24	22										
3 1/2	30	29	27										
3 3/4	35	33	32										
4	40	39	37	35	32	29							
4 1/8	43	41	39	37	35	32							
4 1/4	46	44	42	40	38	35							
4 1/2	51	50	48	46	43	41							
4 3/4			54	52	50	47	44						
5			61	59	56	53	50						
5 1/4			68	6	63	60	57						
5 1/2			75	73	70	67	64	60					
5 3/4			82	80	78	75	72	67	64	60			
6			90	88	85	83	79	75	72	68			
6 1/4			98	96	94	91	88	83	80	76	72		
6 1/2			107	105	102	99	96	91	89	85	80		
6 3/4			116	114	111	108	105	100	98	93	89		
7			125	123	120	117	114	110	107	103	98	93	84
7 1/4			134	132	130	127	124	119	116	112	108	103	93
7 1/2			144	142	139	137	133	129	126	122	117	113	102
7 3/4			154	152	150	147	144	139	136	132	128	123	112
8			165	163	160	157	154	150	147	143	138	133	122
8 1/4			176	174	171	168	165	160	158	154	149	144	133
8 1/2			187	185	182	179	176	172	169	165	160	155	150
9			210	208	206	203	200	195	192	188	184	179	174
9 1/2			234	232	230	227	224	220	216	212	209	206	198
9 3/4			248	245	243	240	237	232	229	225	221	216	211
10			261	259	257	254	251	246	243	239	235	230	225
11			317	315	313	310	307	302	299	295	291	286	281
12			379	377	374	371	368	364	361	357	352	347	342

5-7

2 13/16 0.10 Minimum Make-up Torque² ft/lb. Bore of Drill Collar. (in) 2 1/4 1,749 1,749 1,749 1,749 2,926 2,926 2,926 3,697 3,697 13/4 '2,508 2,647 2,647 '2,241 2,574 2,574 '3,797 4,151 4,151 4,151 4,606 1 1/2 '2,241 '3,028 '3,285 '3,285 5,206 5,206 5,206 5,206 1 1/4 2,508 3,330 3,387 '2,508 '3,330 4,000 OD (in) 3 3 1/8 3 1/8 3 1/4 3 1/4 3 1/4 3 1/2 3 1/2 3 3/4 3 3/4 Regular API IF Connection Type NC23 Type PAC Size 2 3/8 2 7/8 2 3/8 AP

Drill Collar Connection Make-Up Torque †

5-8

IBEX DRILLING SOLUTIONS

05 ENGINEERING DATA

2 13/16 2 1/2 Minimum Make-up Torque² ft/lb. Bore of Drill Collar, (in) 2 1/4 5,685 5,685 5,685 '4,640 6,853 6,466 7,115 7,115 \sim ³,383 4,002 4,002 '4,089 '5,352 7,433 *4,640 *7,390 *6,466 *7,886 *7,886 13/4 '4,089 '5,352 '8,059 *4,640 *7,390 *6,466 *7,886 9,307 1 1/2 3,383 4,951 4,951 '3,838 5,766 5,766 5,766 14,089 15,352 18,059 18,059 10,471 10,471 1 1/4 OD (in) 3 1/2 3 3/4 3 7/8 4 1/8 4 1/4 4 1/2 3 3/4 3 7/8 4 1/8 3 7/8 4 1/8 X-Hole Dbl. Streamline Mod. Open Regular Connection Type Regular API IF NC31 Tvpe Size 2 7/8 2 7/8 3 1/2 2 7/8 2 7/8 API 3 1/2

Drill Collar Connection Make-Up Torque †

05 ENGINEERING DATA

IBEX DRILLING SOLUTIONS
2 13/16 7,411 7,411 7,411 7,411 8,311 8,311 8,311 8,311 8,311 2 Ę ć Ξ

05 ENGINEERING DATA

Drill Collar,	2 1/4	5,391 5,391	*9,038 *9,038 *9,038	*5,161 *8,497 10,144 10,144 10,144
t/lb. Bore of	2	6,853 6,853	*9_038 *9_038 *9_038	*5,161 *8,497 11,803 11,803 11,803
up Torque² f	1 3/4	8, 161 8, 161	*9,038 *9,038 *9,038	*5,161 *8,497 *12,074 13,283 13,283
num Make-u	1 1/2	*8,858 9,307		
Minin	1 1/4	*8,858 10,286		
	1			
	OD (in)	4 1/4 4 1/2	4 1/2 4 3/4 5	4 1/4 4 1/2 5 1/4 5 1/4
rection Type	Type	Slim Hole	NC35	X-Hole Slim Hole Mod. Open
Conr	Size	3 1/2	API	3 1/2 4 3 1/2

IBEX DRILLING SOLUTIONS

5-10

Drill Collar Connection Make-Up Torque †

Drill Collar Connection Make-Up Torque †

5-11

nection Type			Minir	num Make-	up Torque ²	ft/lb. Bore (of Drill Collar	r, (in)	
Ð	OD (in)	1 1/2	1 3/4	2	2 1/4	2 1/2	2 13/16	ю	3 1/4
4	5 1/4		*12,590	*12,590	*12,590	*12,590	*12,590		
	5 1/2		*17,401	*17,401	*17,401	*17,401	16,536		
	5 3/4		*22,531	*22,531	21,714	19,543	16,536		
	9		25,408	23,671	21,714	19,543	16,536		
	6 1/4		25,408	23,671	21,714	19,543	16,536		
egular	5 1/2		*15,576	*15,576	*15,576	*15,576	*15,576		
I	5 3/4		*20,609	*20,609	*20,609	19,601	16,629		
	9		25,407	23,686	21,749	19,601	16,629		
	6 1/4		25,407	23,686	21,749	19,601	16,629		
74	5 3/4		*20,895	*20,895	*20,895	*20,895	18,161		
	9		*26,453	25,510	23,493	21,257	18,161		
			27,300	25,510	23,493	21,257	18,161		
			27,300	25,510	23,493	21,257	18,161		

Drill Collar Connection Make-Up Torque †

IBEX DRILLING SOLUTIONS

Drill Collar Connection Make-Up Torque †

	3 3/4															
; (in)	3 1/2	*12,973	17,900	17,900	17,900	17,900	*17,738	20,311	20,311	20,311	20,311	*18,019	21,051	21,051	21,051	21,051
f Drill Collar	3 1/4	*12,973	*18,119	19,921	19,921	19,921	*17,738	22,426	22,426	22,426	22,426	*18,019	23,159	23,159	23,159	23,159
t/lb. Bore of	0	*12,973	*18,119	22,028	22,028	22,028	*17,738	*23,422	25,676	25,676	25,676	*18,019	*23,681	26,397	26,397	26,397
up Torque ² f	2 13/16	*12,973	*18,119	*23,605	25,272	25,272	*17,738	*23,422	28,021	28,021	28,021	*18,019	*23,681	28,732	28,732	28,732
num Make-L	2 1/2	*12,973	*18,119	*23,605	27,294	27,294										
Minin	2 1/4															
	2															
	OD (in)	5 1/2	5 3/4	9	6 1/4	6 1/2	5 3/4	9	6 1/4	6 1/2	6 3/4	5 3/4	9	6 1/4	6 1/2	6 3/4
nection Type	Type	API Full Hole					X-Hole	NC46	API IF	Semi IF	Dbl. Streamline	H-90 ⁴				
Con	Size	4 1/2					4 1/2	API	4	4 1/2	ъ	4 1/2				

IBEX DRILLING SOLUTIONS

5-13

Drill Collar Conn	ection Make-Up	Torque †
-------------------	----------------	----------

Ō	nnection Type			Minir	<u>mum Make-</u>	up Torque ²	ft/lb. Bore (of Drill Colla	r, (in)	
Size	Type	OD (in)	2	2 1/4	2 1/2	2 13/16	с	3 1/4	3 1/2	3 3/4
ъ	H-90 ⁴	6 1/4				*25,360	*25,360	*25,360	*25,360	23,988
		6 1/2				*31,895	*31,895	29,400	27,167	23,988
		6 3/4				35,292	32,825	29,400	27,167	23,988
						35,292	32,825	29,400	27,167	23,988
4 1/2	API IF	6 1/4		*23,004	*23,004	*23,004	*23,004	*23,004		
API	NC50	6 1/2		*29,679	*29,679	*29,679	*29,679	26,675		
5	X-Hole	6 3/4		*36,742	35,824	32,277	29,966	26,675		
5	Mod. Open	7		38,397	35,824	32,277	29,966	26,675		
5 1/2	Dbl. Streamline	7 1/4		38,397	35,824	32,277	29,966	26,675		
£	Semi IF	7 1/2		38,397	35,824	32,277	29,966	26,675		
5 1/2	H-90 ⁴	6 3/4		*31,941	*31,941	*31,941	*31.941	*31.941		
		7		*41,993	40,117	36,501	34,142	30,781		
		7 1/4		42,719	40,117	36,501	34,142	30,781		
		7 1/2		42,719	40,117	36,501	34,142	30,781		

IBEX DRILLING SOLUTIONS

e	Mini	mum Make-	up Torque ²	ft/lb. Bore c	of Drill Collar	. (in) 2,155	2
OD (in)	2 2 1/4	2 1/2	2 13/16	6	3 1/4	3 1/2	3 3/4
6 3/4	*31,941	*31,941	*31,941	*31,941	30,495		
7	*39,419	*39,419	36,235	33,868	30,495		
7 1/4	42,481	39,866	36,235	33,868	30,495		
7 1/2	42,481	39,866	36,235	33,868	30,495		
7	*32,762	*32,762	*32,762	*32,762	*32,762		
7 1/4	*40,998	*40,998	*40,998	*40,998	*40,998		
7 1/2	*49,661	*49,661	47,756	45,190	41,533		
7 3/4	54,515	51,687	47,756	45,190	41,533		
7 1/4		*40,498	*40,498	*40,498	*40,498		
7 1/2		*49,060	48,221	45,680	42,058		
7 3/4		52,115	48,221	45,680	42,058		
ω		110 4 4 F	10 221	15 680	42.058		

Drill Collar Connection Make-Up Torque †

5-15

[−] orque ² ft/lb. Bore of Drill Collar, (in)	13/16 3 3 1/4 3 1/2 3 3/4	6,399 *46,399 *46,399	3,346 50,704 46,936	3,346 50,704 46,936	3,346 50,704 46,936	.5.509 *45.509 *45.509	5,708 53,629 49,855	6,273 53,629 49,855	6,273 53,629 49,855	.5,131 *55,131 *55,131)5,438 *65,438 61,624	8,398 65,607 61,624	8,398 65,607 61,624	8,398 65,607 61,624
e-up Torque	2 13/16	9 *46,399	7 53,346	3 53,346	3 53,346	9 *45,509	8 *55,708	1 56,273	1 56,273	1 *55,131	8 *65,438) 68,398) 68,398) 68,398
Ainimum Mak	4 2 1/2	*46,39(*55,627	57,393	57,393	*45,509	*55,708	60,321	60,321	*55,13	*65,438	72,670	72,670	72,670
~	2 2 14													
	OD (in)	7 1/2	7 3/4	œ	8 1/4	7 1/2	7 3/4	œ	8 1/4	~	8 1/4	8 1/2	8 3/4	0
nnection Type	Type	API Regular				H-90 ⁴				NC61				
Ő	Size	6 5/8				6 5/8				API				

Drill Collar Connection Make-Up Torque †

IBEX DRILLING SOLUTIONS

Drill Collar Connection Make-Up Torque †

Conr	rection Type			Minir	mum Make-	up Torque ²	ft/lb. Bore o	f Drill Collar	r, (in)	
Size	Type	OD (in)	2	2 1/4	2 1/2	2 13/16	3	3 1/4	3 1/2	3 3/4
5 1/2	API IF	œ			*56,641	*56,641	*56,641	*56,641	*56,641	
		8 1/4			*67,133	*67,133	*67,133	63,381	63,381	
		8 1/2			74,626	70,277	67,436	63,381	59,027	
		8 3/4			74,626	70,277	67,436	63,381	59,027	
		6			74,626	70,277	67,436	63,381	59,027	
		9 1/4			74,626	70,277	67,436	63,381	59,027	
6 5/8	API Full Hole	8 1/2			*67,789	*67,789	*67,789	*67,789	*67,789	67,184
		8 3/4			*79,544	*79,544	*79,544	76,706	72,102	67,184
		б			88,852	83,992	80,991	76,706	72,102	67,184
		9 1/4			88,852	83,992	80,991	76,706	72,102	67,184
		9 1/2			88,852	83,992	80,991	76,706	72,102	67,184
API NC70		0			*78,781	*78,781	*78,781	*78,781	*78,781	*78,781
		9 1/4			*88,802	*88,802	*88,802	*88,802	*88,802	*88,802
		9 1/2			*102,354	*102,354	* 102,354	101,107	92,214	90,984
		9 3/4			113,710	108,841	105,657	101,107	92,214	90,984
		10			113,710	108,841	105,657	101,107	92,214	90,984
		10 1/4			113,710	108,841	105,657	101,107	92,214	90,984

5-17

Drill Collar Connection Make-Up Torque †

8 1/2 8 1/2 8 1/2

5-18

Drill Collar Connection Make-Up Torque †

Type Minimum Make-up Torque ² ft/lb. Bore of Drill Collar, (in)	Type OD (in) 2 2 1/4 2 1/2 2 13/16 3 3 1/4 3 1/2 3 3/4	Regular 10 *109,345 *109,345 *109,345 *109,345 *109,345 *109,345 *109,345 *109,345 *109,345 *109,345 *109,345 10 1/4 *125,263 *125,263 *125,263 125,034 10 1/2 *141,767 *141,767 *141,767 141,134 136,146 130,777 125,034	90 ⁴ 10 1/4 *113,482 *113,482 *113,482 *113,482 *113,482 *113,482 *113,482 *113,482 *113,482 *130,063 *	+-90 ⁴ 8 3/4 *68,061 *68,061 67,257 62,845 58,131
nnection Type	Type O	API Regular 1	H-90⁴ 1	H-90 ⁴
Con	Size	8 5/8	8 5/8	L.

5-19

Drill Collar Connection Make-Up Torque †

	3 3/4	*73,099 77,289 77,289 77,289	*91,667 98,804 98,804 98,804 98,804	*112,883 *130,672 130,871	*92,960 *110,781 *129,203
, (in)	3 1/2	*73,099 82,457 82,457 82,457	*91,667 104,171 104,171 104,171 104,171	*112,883 *130,672 136,846	*92,960 *110,781 *129,203
FDrill Collar	3 1/4	*73,099 *84,463 87,292 87,292	*91,667 *106,260 109,188 109,188	*112,883 *130,672 142,430	*92,960 *110,781 *129,203
t/lb. Bore of	3	*73,099 *84,463 91,789 91,789	*91,667 *106,260 113,851 113,851	*112,883 *130,672 14,616	*92,960 *110,781 *129,203
up Torque ² 1	2 13/16		*91,667 *106,260 117,112 117,112		
num Make-	2 1/2				
Minir	2 1/4				
	2				
	OD (in)	9 1/4 9 1/2 9 3/4 10	9 3/4 10 10 1/4 10 1/2	10 3/4 11 11 1/4	10 3/4 11 11 1/4
onnection Type	Type	API Regular (with low torque face)	H-90 ⁴ (with low torque face)	API Regular (with low torque face)	H-90 ⁴ (with low torque face)
ŏ	Size	7 5/8	7 5/8	8 5/8	8 5/8

6

IBEX DRILLING SOLUTIONS

Drill Collar Connection Make-Up Torque †

† Recommended Make-Up Torque¹ for Rotary Shouldered Drill Collar Connections.

Notes:

- Torque figures preceded by an asterisk (*) indicate that the weaker member for corresponding outside diameter (OD) and bore is the box thread. For all other torque values the weaker connection is the pin thread.
- In each connection size and type group, torque values apply to all connection types in the group, when used with the same drill collar outside diameter and bore. i.e. 2 3/8 API IF, API NC26, and 2 7/8 Slim Hole connections used with 3 ½ x 1 ¼ drill collars all have the same minimum bake-up torque of 4,600 ft/lb and the box is the weakest connection.
- Stress-relief features are disregarded for make-up torque.

Footnotes:

- Basis of calculations for recommended makeup torque assumed the use of a thread compound containing 40-60% by weight of finely powdered metallic zinc or 60% by weight of finely powdered metallic lead with not more than 0.3% total active sulfur applied thoroughly to all threads and shoulders and using the modified screw jack formula in API RP7G (16th edition) Appendix A, paragraph A.8 and a unit stress of 62,500 psi in the box or pin, whichever is weaker.
- Normal torque range is tabulated value plus 10%. Higher torque values may be used under extreme conditions.
- Make-up torque for 2 7/8 PAC connection is based on 87,500 psi stress and other factors listed in footnote 1.
- Make-up torque for H-90 connection is based on 56,200 psi stress and other factors listed in footnote 1.

The information in the above table is taken from API Recommended Practice 7G, Sixteenth Edition, December 1, 1998.

5-21

	M ake-up Torque for Min OD Tool Joint (ft/lb)	6,769	8,822	9,348 9,595	11,963	6,476	6,476	6,593	6,962
Class 2	Min Box Shoulder With Eccentric Wear (in)	5/32	7/32	15/64 13/64	17/64	5/64	5/64	7/64	3/32
	Min OD Tool Joint (in)	4 15/32	4 19/32	4 5/8 4 27/32	4 31/32	5 5/32	5 5/32	4 15/16	4 27/32
	Make-up Torque for Min OD Tool Joint (ft/lb)	7,785	9,879	10,957 11,363	14,419	7,843	7,843	7,866	7,630
remium Class	Min Box Shoulder With Eccentric Wear (in)	3/16	1/4	9/32 1/4	21/64	7/64	7/64	9/64	7/64
٩	Min OD Tool : Joint (in)	4 17/32	4 21/32	4 23/32 4 15/16	5 3/32	5 7/32	5 7/32	5	4 7/8
	Make-up Torque ⁶ (ft/lb)	12,196 P	13,328 P	15,909 P 16,656 P	19,766 P	20,175 P	17,285 P	13,186 P	21,224 P
int Data	New ID (in)	2 9/16	2 7/16	2 1/8 2 9/16	2 1/4	3 1/4	3 7/16	3 15/32	2 13/16
New Tool Jo	New OD (in)	5	5	5 5 1/4	5 1/2	9	5 3/4	5 1/4	51/2
	Connection	NC38	NC38	NC38 NC40	NC40	NC46	4 WO	4 OHLW	4 H90
	Type Upset and Grade	EU-E75	EU-X95	EU-6105 EU-6105	EU-8135	EU-E75	EU-E75	EU-E75	IU-E75
Drill Pipe	Nom Weight (ft/lb)	15.50	15.50	15.50 15.50	15.50	11.85	11.85	11.85	11.85
	Nom Size (in)	3 1/2	3 1/2	3 1/2	3 1/2	4			

5-22

	M ake-up Torque for Min OD Tool Joint (ft/lb)	7,877	7,843	7,817	7,839	7,630	9,595	9,937	9,673	10,768	10,647	11.065
Class 2	Min Box Shoulder With Eccentric Wear (in)	5/32	7/64	1/4	9/64	7/64	13/64	5/32	5/32	15/64	11/64	3/16
	Min OD Tool Joint (in)	4 3/4	5 7/32	4 3/8	ç	4 7/8	4 27/32	5 5/16	4 31/32	4 29/32	511/32	5 1/32
	M ake-up Torque for M in OD Tool Joint (ft/lb)	9,017	9,233	8,782	9,131	8,986	11,363	11,363	11,065	12,569	12,813	12.481
emium Class	Min Box Shoulder With Eccentric Wear (in)	3/16	9/64	15/64	11/64	9/64	1/4	3/16	3/16	9/32	7/32	7/32
PI	Min OD Taal (Joint (in)	4 13/16	5 9/32	4 7/16	5 1/16	4 15/16	4 15/16	5 3/8	5 1/32	5	5 7/16	5 3/32
	Make-up Torque ⁶ (ft/lb)	14,092 P	20,175 P	9,102 P	16,320 P	21,224 P	15,404 P	20,175 P	21,224 P	18,068 P	20,175 P	21.224 P
int Data	New ID (in)	2 13/16	3 1/4	2 9/16	3 1/4	2 13/16	2 11/16	3 1/4	2 13/16	2 7/16	3 1/4	2 13/16
New Tool Jo	New OD (in)	5 1/4	9	4 5/8	5 1/2	51/2	5 1/4	9	51/2	5 1/2	9	5 1/2
	Connection	NC40	NC46	4 SH ²	4 OHSW	4 H90	NC40	NC46	4 H90	NC40	NC46	4 H90
	Type Upset and Grade	IU-E75	EU-E75	10-E75	EU-E75	IU-E75	10-X95	EU-X95	IU-X95	IU-6105	EU-6105	IU-G105
Drill Pipe	Nom Weight (ft/lb)	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00	14.00
	Nom Size (in)	4					4			4		

5-23

Drill Pipe New Tool Joint Data	New Tool Joint Data	New Tool Joint Data	New Tool Joint Data	birt Data			ē.	remium Class Min Box	Makeup Toraiofor	M C C	Class 2 Min Box Chouldor	M ake-up Toraito for
Weight Upset and Connection New OD	Upset and Connection New OD	Connection New OD (in)	New OD (in)		New ID (in)	Make-up Torque ⁶ (ft/lb)	Min OD Tool (Joint (in)	Shoulder With Eccentric	Min OD	Tool Joint	With With	Min OD
(TUID) Grade	Grade			, ,				Wear (in)	1001 JOIN (d1/11)	(II)	Eccentric Wear (in)	1001 JOINT (divib)
14.00 EU-S135 NC46 6 3	EU-S135 NC46 6 3	NC46 6 3	6 3	e		23,538 P	5 9/16	9/32	15,787	5 1/2	1/4	14,288
15.70 IU-E75 NC40 51/4 2 11/16	IU-E75 NC40 51/4 2 11/16	NC40 51/4 2 11/16	51/4 2 11/16	2 11/16		15,404 P	4 7/8	7/32	10,179	4 25/32	11/64	8,444
15.70 EU-E75 NC46 6 3 1/4	EU-E75 NC46 6 3 1/4	NC46 6 3 1/4	6 3 1/4	3 1/4		20,175 P	5 5/16	5/32	9,937	5 1/4	1/8	8,535
15.70 IUE75 4 H90 5 1/2 2 13/16	IU-E75 4 H90 5 1/2 2 13/16	4 H90 51/2 2 13/16	51/2 2 13/16	2 13/16		21,224 P	4 31/32	5/32	9,673	4 29/32	1/8	8,305
15.70 IU-X95 NC40 5.1/2 2 7/16	IU-X95 NC40 51/2 2 7/16	NC40 51/2 2 7/16	51/2 2 7/16	2 7/16		18,068 P	ъ	9/32	12,569	4 29/32	15/64	10,768
15.70 EU-X95 NC46 6 3	EU-X95 NC46 6 3	NC46 6 3	9 3	m		23,538 P	5 7/16	7/32	12,813	5 11/32	11/64	10,647
15.70 IU-X95 4 H90 5 1/2 2 13/16	IU-X95 4 H90 5 1/2 2 13/16	4 H90 51/2 2 13/16	51/2 2 13/16	2 13/16		21,224 P	5 3/32	7/32	12,481	5 1/32	3/16	11,065
15.70 EU-6105 NC46 6 3	EU-G105 NC46 6 3	NC46 6 3	9	с м		23,538 P	5 15/32	15/64	13,547	5 13/32	13/64	12,085
15.70 IU-G105 4 H90 5 1/2 1 13/16	IU-G105 4 H90 5 1/2 1 13/16	4 H90 5 1/2 1 13/16	51/2 1 13/16	1 13/16		21,224 P	5 5/32	1/4	13,922	5 1/16	13/64	11,770

5-24

	Drill Pipe			New Tool Ju	oint	Data		<u>م</u>	remium Class			Class 2	
Nom Size (in)	Nom Weight (ft/lb)	Type Upset and Grade	Connection	New OD (in)	ž –	D (ii)	Make-up Torque ⁶ (ft/lb)	Min OD Tool Joint (in)	Min Box Shoulder With Eccentric Wear (in)	Make-up Torque for Min OD Tool Joint (ft/lb)	Min OD Tool Joint (in)	Min Box Shoulder Vith Eccentric Wear (in)	M ake-up Torque for Min OD Tool Joint (ft/lb)
4	15.70	IU-S135	NC46	9	7	5/8	26,982 B	5 21/32	21/64	18,083	5 17/32	17/64	15,035
	15.00	EU-S135	CN46	g	2	2/8	25,118 P	5 21/32	21/64	18,083	5 17/32	17/64	15,035
4 1/2	16.60	IEU-E75	4 1/2 FH	9	с		20,868 P	5 3/8	13/64	12,125	5 9/32	5/32	10,072
	16.60	IEU-E75	NC46	61/4	m	1/4	20,396 P	5 13/32	13/64	12,085	5 11/32	11/64	10,647
	16.60	IEU-E75	4 1/2 OHSW	5 7/8	m	3/4	16,346 P	5 7/16	13/64	11,862	5 3/8	11/64	10,375
	16.60	IEU-E75	NC50	6 5/8	m	3/4	22,836 P	5 23/32	5/32	11,590	511/16	9/64	10,773
	16.60	IEU-E75	4 1/2 H90	9	e	1/4	23,355 P	5 11/32	3/16	12,215	5 9/32	5/32	10,642
4 1/2	16.60	IEU-X95	4 1/2 FH	g	7	3/4	23,843 P	5 1/2	17/64	14,945	5 13/32	7/32	12,821
	16.60	IEU-X95	NC46	61/4	m	1/4	20,396 P	5 17/32	17/64	15,035	5 7/16	7/32	12,813
	16.60	EU-X95	NC50	6 5/8	m	3/4	22,836 P	5 27/32	7/32	14,926	5 25/32	3/16	13,245
	16.60	IEU-X95	4 1/2 H90	9	m		27,091 P	5 15/32	1/4	15,441	5 3/8	13/64	13,102

5-25

	M ake-up Torque for Min OD Tool Joint (ft/lb)	14,231	14,288	14,082	14,625	18,083	18,367	12,125	12,085	12,415	12.215
Class 2	Min Box Shoulder With Eccentric Wear (in)	1/4	1/4	13/64	15/64	21/64	9/32	13/64	13/64	3/16	3/16
	Min OD Tool Joint (in)	5 15/32	5 1/2	513/16	5 7/16	5 21/32	5 31/32	5 3/8	5 13/32	534	511/32
	M ake-up Torque for M in OD Tool Joint (fbb)	16,391	16,546	16,633	16, 264	21,230	21,017	14,231	14,288	14,082	13,815
remium Class	Min Box Shoulder With Eccentric Wear (in)	19/64	19/64	1/4	17/64	25/64	21/64	1/4	1/4	13/64	7/32
Ч	Min OD Tool ! Joint (in)	5 9/16	5 19/32	5 29/32	5 1/2	5 25/32	6 1/16	5 15/32	5 1/2	5 13/16	5 13/32
	Make-up Torque ⁶ (ft/lb)	23,843 P	23,795 P	22,836 P	27,091 P	26,923 P	27,076 P	20,868 P	23,795 P	24,993 P	27,091 P
t Data	New ID (in)	3/4		3/4		3/4	1/2			5/8	
Vew Tool Join	New OD (in)	6 2	61/4 3	65/8 3	9	61/4 2	6 5/8 3	9	61/4 3	65/8 3	9
ų	Connection	4 1/2 FH	NC46	NC50	4 1/2 H90	NC46	NC50	4 1/2 FH	NC46	NC50	4 1/2 H90
	Type Upset and Grade	IEU-6105	IEU-0105	EU-6105	IEU-6105	IEU-S135	EU-S135	IEU-6105	IEU-G105	EU-6105	IEU-6105
Drill Pipe	Nom Weight (ft/lb)	16.60	16.60	16.60	16.60	16.60	16.60	20.00	20.00	20.00	20.00
	Nom Size (in)	4 1/2				4 1/2		4 1/2			

5-26

	M ake-up Torque for Min OD Tool Joint (fblb)	15,665	15,787	15,776	15,441	17,311	16,633	21,914	14,082	17,497	17,116
Class 2	Min Box Shoulder With Eccentric Wear (in)	9/32	9/32	15/64	1/4	5/16	1/4	11/32	13/64	17/64	1/4
	Min OD Tool Joint (in)	5 17/32	5 9/16	5 7/8	5 15/32	5 5/8	5 29/32	6 3/32	513/16	515/16	5 3/4
	M ake-up Torque for M in OD Tool Joint (ft/lb)	17,861	18,083	17,497	17,929	19,644	20,127	25,569	15,776	20,127	19,862
remium Class	Min Box Shoulder With Eccentric Wear (in)	21/64	21/64	17/64	19/64	23/64	5/16	13/32	15/64	5/16	19/64
٩	Min OD Tool : Joint (in)	5 5/8	5 21/32	5 15/16	5 9/16	5 23/32	6 1/32	6 7/32	5 7/8	6 1/32	5 27/32
	Make-up Torque ⁶ (ft/lb)	29,778 P	26,923 P	27,076 P	27,091 P	29,778 P	27,076 P	36,398 P	22,836 P	27,076 P	31,084 P
rt Data	New ID (in)	2 1/2	2.3/4	3 1/2	_	2 1/2	3 1/2	5 7/8	3.44	3 1/2	3 1/4
Vew Tool Joir	New OD (in)	9	6 1/4	6 5/8	9	61/4	6 5/8	6 5/8	6 5/8	6 5/8	61/2
	Connection	4 1/2 FH	NC46	NC50	4 1/2 H90	NC46	NC50	NC50	NC50	NC50	5 H90
	Type Upset and Grade	IEU-X95	IEU-X95	EU-X95	IEU-X95	IEU-6105	EU-6105	EU-S135	IEU-E75	IEU-X95	IEU-X95
Drill Pipe	Nom Weight (ft/lb)	20.00	20.00	20.00	20.00	20.00	20.00	20.00	19.50	19.50	19.50
	Nom Size (in)	4 1/2				4 1/2		4 1/2	5	5	

5-27

Type	New Tool Joint Data	ool Joint Data	int Data	ata			emium Class Min Box	M ake-up Torque for	Min OD	Class 2 Min Box Shoulder	M ake-up Torque for
Upset and Connection New UD New ID markerup Grade (In) (in) Torque ⁶ (f1/1b)	ction New U New U wave up (in) (in) Torque ⁶ (fi/lb)	UN NEW IN MARCAUN	(in) Torque ⁶ (fi/lb)	v.L. ware-up n) Torque ⁶ (ft/lb)	manerup Torque ⁶ (ft/lb)	Joint (in)	Eccentric Wear (in)	M in OD Tool Joint (ff/b)	Tool Joint (in)	With Eccentric Wear (in)	Min OD Tool Joint (ff/lb)
IEU-0105 NC50 65/8 3 1/4 31,025 P	0 65/8 3 1/4 31,025 P	31,025 P	3 1/4 31,025 P	1/4 31,025 P	31,025 P	6 3/32	11/32	21,914	9	19/64	19,244
IEU-G105 5 H90 6 1/2 3 1/2 35,039 P	0 61/2 3 1/2 35,039 P	/2 3 1/2 35,039 P	3 1/2 35,039 P	1/2 35,039 P	35,039 P	5 29/32	21/64	21,727	513/16	9/32	18,940
IEU-S135 NC50 6.5/8 2 3/4 38,044 P	0 65/8 2 3/4 38,044 P	18 2 3/4 38,044 P	2 3/4 38,044 P	3/4 38,044 P	38,044 P	6 5/16	29/64	28,381	6 3/16	25/64	24,645
IEU-S135 51/2FH 71/4 3 1/2 43,490 P	FH 71/4 3 1/2 43,490 P	/4 3 1/2 43,490 P	3 1/2 43,490 P	1/2 43,490 P	43,490 P	6 3/4	3/8	28,737	65/8	5/16	24,412
IEU-E75 NC 50 6 5/8 3 1/2 27,076 P	0 65/8 3 1/2 27,076 P	X8 3 1/2 27,076 P	3 1/2 27,076 P	1/2 27,076 P	27,076 P	6 1/32	5/16	20,127	515/16	17/64	17,497
IEU-E75 51/2FH 7 3 1/2 37,742 B	FH 7 3 1/2 37,742 B	· 3 1/2 37,742 B	3 1/2 37,742 B	1/2 37,742 B	37,742 B	6 1/2	1/4	20,205	6 13/32	13/64	17,127
IEU-X95 NC50 6.5/8 3 34,680 P	0 65/8 3 34,680 P	34,680 P 34,680 P	3 34,680 P	34,680 P	34,680 P	6 7/32	13/32	25,569	6 3/32	11/32	21,914
IEU-X95 51/2FH 7 31/2 37/742 B	FH 7 3 1/2 37,742 B	· 3 1/2 37,742 B	3 1/2 37,742 B	1/2 37,742 B	37,742 B	6 21/32	21/64	25,483	6 9/16	9/32	22,294
IEU-G105 NC50 6.5/8 2 3/4 38,044 P	0 65/8 2 3/4 38,044 P	i/8 2 3/4 38,044 P	2 3/4 38,044 P	3/4 38,044 P	38,044 P	6 9/32	7/16	27,437	6 5/32	3/8	23,728
IEU-G105 51/2FH 71/4 3 1/2 43,490 P	FH 71/4 3 1/2 43,490 P	/4 3 1/2 43,490 P	3 1/2 43,490 P	1/2 43,490 P	43,490 P	6 23/32	23/64	27,645	6 5/8	5/16	24,412

5-28

Drill Pipe			New Tool J	ij	Data		۹	remium Class			Class 2	
+	Type Upset and Grade	Connection	New OD (in)	Ż	ew ID (in)	Make-up Torque ⁶ (ft/lb)	Min OD Tool Joint (in)	Min Box Shoulder With Eccentric Wear (in)	M akte-up Torque for M in OD Tool Joint (fVIb)	Min OD Tool Joint (in)	Min Box Shoulder With Eccentric Wear (in)	M ake-up Torque for Min OD Tool Joint (ft/lb)
0	IEU-S135	5 1/2 FH	7 1/4	e co	1/4	47,230 B	6 15/16	15/32	35,446	613/16	13/32	30,943
0	IEU-E75	5 1/2 FH	7	4		33,560 P	6 15/32	15/64	19,172	6 13/32	13/64	17,127
00	IEU-X95 IEU-X95	5 1/2 FH 5 1/2 H90	~ ~	m m	3/4 1/2	34,742 B 35,454 P	6 5/8 6 13/16	5/16 21/64	24,412 24,414	617/32 63/32	17/64 9/32	21,246 21,349
8	IEU-6105	5 1/2 FH	7 1/4	ŝ	1/2	43,490 P	6 23/32	23/64	27,645	6 19/32	19/64	23,350
8	IEU-S135	5 1/2 FH	71/2	e		53,302 P	6 15/16	15/32	35,446	613/16	13/32	30,943
2	IEU-E75	5 1/2 FH	7	4		33,560 P	6 9/16	9/32	22,294	6 15/32	15/64	19,172
2	IEU-X95	5 1/2 FH	7 1/4	m	1/2	43,490 P	6 23/32	23/64	27,645	6 19/32	19/64	23,350

IBEX DRILLING SOLUTIONS

Properties of Drill Pipes and Tool Joints †

	M ake-up Torque for Min OD Tool Joint (ft/lb)	26,560	33,180	24,100	29,552	33,730	42,312	25,451	32,329	36,556	45.241
Class 2	Min Box Shoulder With Eccentric Wear (in)	11/32	7/16	7/32	9/32	21/64	27/64	15/64	5/16	23/64	29/64
	Min OD Tool Joint (in)	611/16	6 7/8	7 3/8	7 1/2	7 19/32	7 25/32	7 13/32	7 9/16	7 21/32	7 27/64
	M ake-up Torque for M in OD Tool Joint (ft/lb)	29,836	38,901	26,810	35,139	37,983	48,204	29,552	37,983	40,860	52,714
emium Class	Min Box thoulder With Eccentric Wear (in)	25/64	33/64	1/4	11/32	5/8	31/64	9/32	3/8	13/32	17/32
Pr	Min OD Taal 9 Joint (in)	6 25/32	7 1/32	7 7/16	7 5/8	7 11/16	7 29/32	7 1/2	7 11/16	7 3/4	œ
	Make-up Torque ⁶ (ft/lb)	43,490 P	62,302 P	44,196 P	44,196 P	51,742 P	65,535 P	44,196 P	51,742 P	51,742 P	65,535 P
Data	lew ID (in)	1/2				3/4	1/4		3/4	3/4	1/4
Joint	~	en en	ŝ	ŝ	ŝ	4	-	ŝ	4	4	4
New Tool	New OD (in)	7 1/4	7 1/2	œ	~	8 1/4	8 1/2	œ	8 1/4	8 1/4	8 1/2
	Connection	5 1/2 FH	5 1/2 FH	6 5/8 FH							
	Type Upset and Grade	IEU-6105	IEU-S135	IEU-E75	IEU-X95	IEU-G105	IEU-S135	IEU-E75	IEU-X95	IEU-G105	IEU-S135
Drill Pipe	Nom Weight (ft/lb)	24.70	24.70	25.20	25.20	25.20	25.20	27.70	27.70	27.70	27.70
	Nom Size (in)	5 1/2	5 1/2	6 5/8				6 5/8			

IBEX DRILLING SOLUTIONS

† Recommended minimum OD and make-up torque of weld-on type tool joints based on torsional strength of box and drill pipe. Tool joint diameters specified are required to retain torsional strength in the tool joint comparable to the torsional strength of the attached drill pipe. These should be adequate for all service. Tool joints with torsional strengths considerably below that of the drill pipe may be adequate for much drilling service.

Footnotes:

- The use of outside diameters (OD) smaller than those listed in the table may be acceptable due to special service requirements.
- Tool joint with dimensions shown has lower torsional yield ration than the 0.80 which is generally used.
- Recommended make-up torque is based on 72,000 psi stress.
- In calculation of torsional strengths of tool joints, both new and worn, the bevels of the tool joint shoulders are disregarded. This thickness measurement should be made in the plane of the face from the ID of the counter bore to the outside diameter of the box, disregarding the bevels.
- Any tool joint with an outside diameter less than API bevel diameter should be provided with a minimum 1/32" depth x 45° bevel on the outside and inside diameter fo the box shoulder and outside diameter of the pin shoulder.
- P = Pin limit. B = Box limit

The information in the above table is taken from API Recommended Practice 7G, Sixteenth Edition, December 1, 1998.

5-31

Size	¹Nominal Weight New	Class	Torsional Y	²Torsior ield Strength	nal Data -	(q ,1J)	³Tensile ⊑ Minimum`)ata Yield Strengt	÷	Load at (Ib)
(u)	(ql/tJ)		E75	X95	G105	S135	E75	X95	G105	S135
2 3/8	4.85	New	4,763	6,033	6,668	8,574	97,817	123,902	136,944	176,071
		Premium	3,725	4,719	5,215	6,705	76,893	97,398	107,650	138,407
		Class 2	3,224	4,083	4,513	5,802	66,686	84,469	93,360	120,035
	9 6 7	Mour	6 7E0	7017	0 751	11 051	100 04	175 070	103 500	307 0VC
	0.00	MAN	007'0		10210	107'11	120,214	770'C71	195,000	240'100
		Premium	4,811	6,093	6,735	8,659	107,616	136,313	150,662	193,709
		Class 2	4,130	5,232	5,782	7,434	92,871	117,636	130,019	167,167
2 7/8	6.85	New	8,083	10,238	11,316	14,549	135,902	172,143	190,263	244,624
		Premium	6,332	8,020	8,865	11,397	106,946	135,465	149,725	192,503
		Class 2	5,484	6,946	7,677	9,871	92,801	117,549	129,922	167,043

5-32

Size OD	¹Nominal Weight New	Class	Torsional Yi	² Torsior ield Strength	nal Data	(q ,1J)	^a Tensile ⊑ Minimum`)ata Yield Strengt	÷	Load at (Ib)
(III)	(ql/ll)		E75	X95	G105	S135	E75	X95	G105	S135
	10.40	New	11,554	14,635	16,176	20,798	214,344	271,503	300,082	385,820
		Premium	8,858	11,220	12,401	15,945	166,535	210,945	233,149	299,764
		Class 2	7,591	9,615	10,627	13,663	143,557	181,839	200,980	258,403
3 1/2	9.50	New	14,146	17,918	19,805	25,463	194,264	246,068	271,970	349,676
		Premium	11,094	14,052	15,531	19,968	152,979	193,774	214,171	275,363
		Class 2	9,612	12,176	13,457	17,302	132,793	168,204	185,910	239,027
	13.30	New	18,551	23,498	25,972	33,392	271,569	343,988	380,197	477,825
		Premium	14,361	18,191	20,106	25,850	212,150	268,723	297,010	381,870
		Class 2	12,365	15,663	17,312	22,258	183,398	232,304	256,757	330,116

IBEX DRILLING SOLUTIONS

II

Mechanical Properties of Drill Pipe †

15,310 19,39, 13,281 16,82, 23,288 29,49, 18,196 23,049

IBEX DRILLING SOLUTIONS

Size OD	¹ Nominal Weight New	Class	Torsional Y	² Torsior ield Strength	nal Data	(fl/lb)	³Tensile [Minimum`)ata Yield Strengt	÷	Load at (Ib)
(u)	(th/b)		E75	X95	G105	S135	E75	X95	G105	S135
	15.70	New	25,810	32,692	36,134	46,458	324,118	410,550	453,765	583,413
		Premium	20,067	25,418	28,094	36,120	253,851	321,544	355,391	456,931
		Class 2	17,315	21,932	24,241	31,166	219,738	278,335	307,633	395,528
4 1/2	13.75	New	25,907	32,816	36,270	46,633	270,034	342,043	378,047	486,061
		Premium	20,403	25,844	28,564	36,725	213,258	270,127	298,561	383,864
		Class 2	17,715	22,439	24,801	31,887	185,389	234,827	259,545	333,701
	16.60	New	30,807	39,022	43,130	55,453	330,558	418,707	462,781	595,004
		Premium	24,139	30,576	33,795	43,450	260,165	329,542	364,231	468,297
		Class 2	20,908	26,483	29,271	37,634	225,771	285,977	316,080	406,388

IBEX DRILLING SOLUTIONS

Size OD	¹ Nominal Weight New	Class	Torsional Y	²Torsior ield Strength	nal Data I	(ql/tl)	^a Tensile [Minimum`)ata Yield Strengt	뜌	Load at (Ib)
(u)	(tl/ll)		E75	X95	G105	S135	E75	X95	G105	S135
	15.70	New	25,810	32,692	36,134	46,458	324,118	410,550	453,765	583,413
		Premium	20,067	25,418	28,094	36,120	253,851	321,544	355,391	456,931
		Class 2	17,315	21,932	24,241	31,166	219,738	278,335	307,633	395,528
4 1/2	13 75	New	25 907	32816	36 270	46 633	270 034	342 043	378 047	486 061
	1	Premium	20,403	25,844	28,564	36,725	213,258	270,127	298,561	383,864
		Class 2	17,715	22,439	24,801	31,887	185,389	234,827	259,545	333,701
	16.60	New	30.807	39.022	43.130	55.453	330,558	418.707	462.781	595.004
		Premium	24,139	30,576	33,795	43,450	260,165	329,542	364,231	468,297
		Class 2	20,908	26,483	29,271	37,634	225,771	285,977	316,080	406,388

IBEX DRILLING SOLUTIONS

Size OD	'Nominal Weight New	Class	Torsional Y	²Torsiol ïeld Strength	nal Data I	(ft/lb)	^a Tensile E Minimum	Data Yield Strengt	ţ	Load at (Ib)
(ii)	(ql/tl)		E75	X95	G105	S135	E75	X95	G105	S135
	19.50	New	41,167	52,144	57,633	74,100	395,595	501,087	553,833	712,070
		Premium	32,285	40,895	45,199	58,113	311,535	394,612	436,150	560,764
		Class 2	27,976	35,436	39,166	50,356	270,432	342,548	378,605	486,778
	25.60	New	52,257	66,192	73,159	94,062	530,144	671,515	742,201	954,259
		Premium	40,544	51,356	56,762	72,979	414,690	525,274	580,566	746,443
		Class 2	34,947	44,267	48,926	62,905	358,731	454,392	502,223	645,715
5 1/2	19.20	New	44,074	55,826	61,703	79,332	372,181	471,429	521,053	669,925
		Premium	34,764	44,035	48,670	62,575	294,260	372,730	411,965	529,669
		Class 2	30,208	28,263	42,291	54,374	255,954	324,208	358,335	460,717

5-37

Size	'Nominal Weight New	Class	Torsional Y	²Torsiol ïeld Strength	nal Data I	(ql/lþ)	aTensile ⊑ Minimum`)ata Yield Strengl	÷	Load at (Ib)
(ij)	(ql/tl)		E75	X95	G105	S135	E75	X95	G105	S135
	21.90	New	50,710	64,233	70,994	91,278	437,116	553,681	611,963	786,809
		Premium	39,863	50,494	55,809	71,754	344,780	436,721	482,692	620,604
		Class 2	34,582	43,804	48,414	62,247	299,533	379,409	419,346	539,160
	24.70	New	56,574	71,660	79,204	101,833	497,222	629,814	696,111	894,999
		Premium	44,320	56,139	62,048	79,776	391,285	495,627	547,799	704,413
		Class 2	38,383	48,619	53,737	69,090	339,533	430,076	475,347	611,160
6 5/8	25.20	New	70,580	89,402	98,812	127,044	489,464	619,988	685,250	881,035
		Premium	55,766	71,522	79,050	101,635	387,466	490,790	542,452	697,438
		Class 2	48,497	61,430	67,896	87,295	337,236	427,166	472,131	607,026

5-38

Load at (Ib)	S135	961,556 760,354 661,419
E	G105	747,877 591,387 514,437
)ata Yield Strengt	X95	676,651 535,064 465,443
a⊤ensile [Minimum`	E75	534,199 422,419 367,455
(ql/tl)	S135	137,330 109,864 94,155
nal Data	G105	106,813 85,450 73,231
² Torsior ield Strength	X95	96,640 77,312 66,257
Torsional Y	E75	76,295 60,192 52,308
Class		New Premium Class 2
'Nominal Weight New	(ft/lþ)	27.70
Size OD	(III)	

IBEX DRILLING SOLUTIONS

New Drill Pipe Torsional and Tensile Data, Used Drill Pipe Torsional and Tensile Data API Premium Class, and Used Drill Pipe Torsional and Tensile Data API Class 2.

Footnotes:

• New weight, nominal with threads and couplings

New Drill Pipe

- Based on the shear strength equal to 57.7% of minimum yield strength and nominal wall thickness Minimum torsional yield strength calculated from equation RP7G, (16th edition) Appendix A, paragraph A.15.
- Tensile data based on minimum values. Minimum tensile strength calculated from equation in API RP7G, (16th edition) Appendix A, paragraph A.13.

Premium Class

- Based on the shear strength equal to 57.7% of minimum yield strength. Torsional data based on 20% uniform wear on outside diameter.
- Tensile data based on 20% uniform wear on outside diameter.
- Class 2
 - Based on the shear strength equal to 57.7% of minimum yield strength. Torsional data based on 30% uniform wear on outside diameter.
 - Tensile data based on 30% uniform wear on outside diameter.

The information in the above table is taken from API Recommended Practice 7G, Sixteenth Edition, December 1, 1998.

5-40

Heavy Walled Drill Pipe

	Τι	ıbe
Nominal Size (in)	ID (in)	Wall Thickness (in)
3 1/2	2 1/16	0.719
3 1/2	2 1/4	0.625
4	2 9/16	0.719
4 1/2	2 3/4	0.875
5	3	1.000
5 1/2	3 3/8	1.063
6 5/8	4 1/2	1.063

Nominal	Tool	Joint	
Size (in)	Connection Size	OD (in)	ID (in)
3 1/2	NC38 (3 1/2 IF)	4 3/4	2 13/16
3 1/2	NC38 (3 1/2 IF)	4 3/4	2 3/8
4	NC40 (4FH)	5 1/4	2 11/16
4 1/2	NC46 (4 IF)	6 1/4	2 7/8
5	NC50 (4 1/2 IF)	6 5/8	3 1/16
5 1/2	5 1/2 FH	7	3 1/2
6 5/8	6 5/8 FH	8	4 1/2

Nominal	Approxim (Including t	ate Weight ube & joints)
Size (iii)	Wt/ft (lb)	Wt/Jt 30 ft (in)
3 1/2	2 1/16	760
3 1/2	2 1/4	695
4	2 9/16	815
4 1/2	2 3/4	1,230
5	3	1,480
5 1/2	3 3/8	1,880
6 5/8	4 1/2	2,290

5-41

Drill Bit Sizes

Rotary Pin Connection	Size of Bit (in)
2 3/8 REG	3 3/4 3 7/8 4 1/8 4 1/4 4 3/8 4 1/2
2 7/8 REG	4 5/8 4 3/4 4 7/8 5
3 1/2 REG	5 1/8 5 3/8 5 5/8 5 7/8 6 6 1/8 6 1/4 6 3/8 6 1/2 6 5/8 6 3/4 7 7 3/8
4 1/2 REG	7 1/2 7 5/8 7 3/4 7 7/8 8 1/8 8 3/8 8 1/2 8 5/8 8 3/4 9 9 3/8

Rotary Pin Connection	Size of Bit (in)
6 5/8 REG	9 1/2 9 5/8 9 3/4 9 7/8 10 5/8 11 1/2 11 5/8 11 3/4 12 1/4 13 1/2 13 3/4 14 3/4 15 16 17 17 1/2 18 1/2
7 5/8 REG	14 1/2 14 3/4 15 16 17 17 1/2 18 1/2 20 22 23 24 26
8 5/8 REG	18 5/8 20 22 23 24 26 27 and larger

5-42

Build Rate	Hole F	Radius
Degrees per 100 ft (30m)	R1 FEET	R2 Meters
2	2865	859
4	1432	430
6	955	286
8	716	215
10	573	172
12	477	143
14	409	123
16	358	107
18	318	95
20	286	86
22	260	78
24	239	72
26	220	66
28	205	61
30	191	57
32	179	54
34	169	51
36	159	48
38	151	45
40	143	43
42	136	41
44	130	39
46	125	37
48	119	36
50	115	34
52	110	33
54	106	32
56	102	31
58	99	30
60	95	29
62	92	28
64	90	27
66	87	26
68	84	25
70	82	25
72	80	24
74	77	23
76	75	23
78	73	22
80	72	21

Hole Curvature

Build Rate	Hole F	Radius
Degrees per 100 ft (30m)	R1 FEET	R2 Meters
82	70	21
84	68	20
86	67	20
88	65	20
90	64	19
92	62	19
94	61	18
96	60	18
98	58	18
100	57	17
105	55	16
110	52	16
115	50	15
120	48	14
125	46	14
130	44	13
135	42	13
140	41	12
145	40	12
150	38	11
155	37	11
160	36	11
165	35	10
170	34	10
175	33	10
180	32	10
185	31	9
190	30	9
195	29	9
200	29	9
210	27	8
220	26	8
230	25	7
240	24	7
250	23	7
260	22	7
270	21	6
280	20	6
290	20	6
3000	10	. 6

FORMULA:

NOZZLE SELECTION

The formula below illustrates the procedure used to properly select the nozzle size.

- From the Motor Specifications, Section 4 of the Motor Handbook, specify the flow rate through the motor (Qm) for the required motor RPM and differential pressure.
- Subtract this flow rate from the total required flow rate (Qt) to obtain the required flow rate through the nozzle (Qn).

Using this comparable nozzle flow rate (Qe) and the optimal motor differential pressure, obtain the required nozzle from the chart in Table 6-1.

06 NOZZLE SELECTION

Example:

A total flow of 700 GPM at 300 PSI differential pressure is required to run the motor. The required speed is 125 RPM and the mud weight is 9 PPG.

The motor spec sheet shows 430 GPM is required to turn the motor at 125 RPM. Subtracting 430 GPM motor flow rate from 700 GPM total flow rate will give the needed nozzle flow rate of 270 GPM.

Adjusting the nozzle flow rate for 9 PPG mud weight will give a nozzle flow rate (Qe) of:

Qe = Qn x .35 x SQRT(PPG) Qe = 270 GPM x .35 x SQRT (9) Qe = 284 GPM

The above chart indicates that a 22/32 nozzle is required to bypass 284 GPM at 300 PSI.

5" 5/6 Lobe 6.7 Stage

7-1

6

5" 6/7 Lobe 8.8 Stage

52.4", TO BEND PT.

5.40 ACROSS PAD

Ø 5.00 STATOR

\$5.00

IBEX DRILLING SOLUTIONS

7-2

5" 6/7 Lobe 8.8 Stage RSS Assist

7-3

6

5" 7/8 Lobe 8.3 Stage

6

7-4

5" 7/8 Lobe 8.3 Stage - RSS Assist

5 3/8" 5/6 Lobe 9.9 Stage

7-6

5 1/2" 5/6 Lobe 9.9 Stage

5 1/2" 6/7 Lobe 8.8 Stage

7-8

5 1/2" 7/8 Lobe 8.3 Stage

7-9

6

5 3/4" x 5 1/2" Combo 6/7 Lobe 8.8 Stage

6 5/8" 5/6 Lobe 8.2 Stage

6 5/8" 6/7 Lobe 7.8 Stage

7-12

6 5/8" 6/7 Lobe 7.8 Stage 55" SBTB

6 5/8" 6/7 Lobe 7.8 Stage RSS Assist

6

6 5/8" 7/8 Lobe 5.7 Stage

6 5/8" 7/8 Lobe 5.7 Stage 55" SBTB

IBEX DRILLING SOLUTIONS

7-16

6 5/8" 7/8 Lobe 5.7 Stage 51" SSBTB - IB Stabilized

6 5/8" 7/8 Lobe 5.7 Stage 51" SSBTB

6 5/8" 7/8 Lobe 6.4 Stage

6

6 5/8" 7/8 Lobe 6.4 Stage 55" SBTB

IBEX DRILLING SOLUTIONS

7-20

7 1/8" 5/6 Lobe 8.3 Stage

6

7 1/8" 7/8 Lobe 8.5 Stage

7-22

7 1/8" 7/8 Lobe 8.5 Stage Jaw Clutch

7-23

7 1/8" x 6 5/8" 7/8 Lobe 6.4 Stage Combo

7-24

8 ¼" 7/8 Lobe 5.9 Stage

8 ¼" 7/8 Lobe 7.0 Stage

IBEX DRILLING SOLUTIONS

7-26

8 1/4" 7/8 Lobe 7.0 Stage Jaw Clutch

7-27

6